
MTL838C
Modbus Implementation

September 2020
INM MTL838C - MBF Rev 3

Instruction manual
MTL fieldbus networks

ii INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

This page left intentionally blank

iii INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

CONTENTS

1 INTRODUCTION . 1

2 QUICKSTART GUIDE . 2

3 BACKGROUND TO THE MTL838C . 3
3.1 The analog-input multiplexer system .3
3.2 Configuring the MTL838C .3
3.3 On-line Configuration .4
3.4 Off-line Configuration. .4
3.5 The PC software .4
3.6 Interconnection of the MTL838C .5
3.7 Initialization mode .5
3.8 Slave, Transmitter and Input addressing .5

3.8.1 Addressing MTL838C slaves . 5/6
3.8.2 Addressing the transmitters of each MTL838C .6

4 MODBUS FUNCTIONS SUPPORTED BY THE MTL838C . 7
4.1 READ COIL STATUS (function 01) . 8/9
4.2 READ INPUT STATUS (function 02) . 9/10
4.3 READ HOLDING REGISTERS (function 03) . 11
4.4 READ INPUT REGISTERS (function 04) . 12/13
4.5 FORCE SINGLE COIL (function 05) .14
4.6 PRESET SINGLE REGISTER (function 06) .15
4.7 READ EXCEPTION STATUS (function 07) .16
4.8 DIAGNOSTICS (function 08) .17
4.9 RETURN QUERY DATA (subfunction 00 00) .18
4.10 RETURN DIAGNOSTIC REGISTER (subfunction 00 02) .19
4.11 CLEAR COUNTERS AND DIAGNOSTIC REGISTERS (subfunction 00 10) .20
4.12 RETURN BUS MESSAGE COUNT (subfunction 00 11) .21
4.13 RETURN BUS COMMUNICATION ERROR COUNT (subfunction 00 12) .22
4.14 RETURN BUS EXCEPTION ERROR COUNT (subfunction 00 13) .23
4.15 PRESET MULTIPLE REGISTERS (function 16) .24

5 EXCEPTION RESPONSES SUPPORTED BY THE MTL838C . 25
5.1 Construction of exception responses . 25/26
5.2 ILLEGAL FUNCTION (exception code 01) .26
5.3 ILLEGAL DATA ADDRESS (exception code 02) .27
5.4 ILLEGAL DATA VALUE (exception code 03) .27
5.5 SLAVE DEVICE FAILURE (exception code 04) .28
5.6 NEGATIVE ACKNOWLEDGE (exception code 07) .28

6 INPUT STATUS FLAGS AND REGISTERS . 29
6.1 Mapping of input status flags and input registers . 29/31
6.2 Revision number of 838 software .31
6.3 Revision number of 831 software .32
6.4 MTL838C status information . 32/33
6.5 ‘Error flag’ .33
6.6 ‘Invalid database’ .33
6.7 ‘Highway OK’ .33
6.8 ‘Transmitter failed’ .34
6.9 ‘CJC Range Error’ .34
6.10 ‘CJC Delta Error’ .34
6.11 ‘Open circuit -’, ‘Low alarm -’ and ‘High alarm detected on any input’ .34
6.12 Not Used .35
6.13 High alarm status register .35
6.14 Low alarm status register .35
6.15 Open alarm status register .36

iv INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

6.16 Scaled analog input value .36
6.17 Cold junction temperature of MTL831B’s .37

7 COIL STATUS FLAGS . 38
7.1 Mapping of coil status flags .38
7.2 Set factory defaults for mV inputs .38
7.3 Confirm database correctly configured .39
7.4 Set factory defaults for mV inputs, leaving DATAFORMAT unchanged .39

8 HOLDING REGISTERS . 40
8.1 Configuration checksum reference .40
8.2 Unused holding registers .41
8.3 Data format selection . 41/42
8.4 Tag field .42
8.5 Number and type of transmitters .43
8.6 Units of temperature .43
8.7 Line frequency of power supply .43
8.8 Input type and safety drive . 44/46
8.9 Input zero with offset - for scaling output measurements .46
8.10 Gain - for scaling output measurements .47
8.11 High alarm level .47
8.12 Low alarm level .47
8.13 Output zero offset .47

9 MTL838C EXCEPTION RESPONSES . 48
9.1 Following ‘READ COIL STATUS’ queries .48
9.2 Following ‘READ INPUT STATUS’ queries .48
9.3 Following ‘READ HOLDING REGISTERS’ query. .48
9.4 Following ‘READ INPUT REGISTERS’ query .49
9.5 Following ‘FORCE SINGLE COIL’ queries .49
9.6 Following ‘PRESET SINGLE REGISTER’ queries .49
9.7 Following ‘READ EXCEPTION STATUS’ queries .49
9.8 Following ‘DIAGNOSTICS’ queries .49
9.9 Following ‘PRESET MULTIPLE REGISTERS’ queries .50
9.10 Following queries not supported by the MTL838C .50

10 SCALING . 51
10.1 Background to scaling input data . 51/52
10.2 Calculation of scaling parameters - in practice . 52/53
10.3 Sensor Input Processing .53

10.3.1 Thermocouple inputs .53
10.3.2 Resistance inputs .54
10.3.3 RTD inputs .54
10.3.4 mV inputs .54
10.3.5 Data timing .54

11 APPENDIX A . 55
11.1 IEEE single precision data format .55

12 APPENDIX B . 56
12.1 Non-IEEE data format .56

12.2 Numerand and exponent . 56/57

13 APPENDIX C . 58
13.1 Faultfinding on the MTL830C System .58

13.1.1 Host cannot communicate with the MTL838C .58

13.1.2 Host cannot read Input Status Flags and Registers .58

1 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

1 INTRODUCTION

This manual is principally intended for instrumentation engineers and technicians
who need to configure the communications between Modbus system hosts and
MTL838C or MTL838C-MBT multiplexer receivers. Since both receivers use the
Modbus protocol, MTL838C will be used to refer to both models unless otherwise
stated.

The manual provides comprehensive information on the Modbus® protocol,
describes the communication between the MTL838C and the host, and provides
detailed information relating to the functions of the MTL838C. No previous
knowledge of Modbus is assumed.

The JBUS® protocol is also supported by the MTL838C. JBUS is virtually identical
to Modbus apart from a slight difference in the addressing of slaves, and this
manual may be used for both protocols. The difference in slave addressing is
explained in the relevant section.

The manual is divided into chapters which can be summarized as follows:

QuickStart Guide
 This describes the commissioning of a simple system with the most
 commonly used settings.

Background to the MTL838C
 Essential information for configuration and maintenance of
 MTL830 Multiplexer Systems.

Modbus functions supported by the MTL838C
 A detailed description of the Modbus functions recognized by the
 MTL838C. This is to enable users to select the most appropriate function
 for the Modbus master.

Exception responses supported by the MTL838C
 This covers a range of diagnostics for the more advanced user.

Input Status Flags and Registers
 Input status flag and register location required for configuration of
 Modbus master.

Coil Status Flags
 Mainly for advance users considering configuration of the MTL838C from
 the Modbus master - a method that is not really recommended.

Holding Registers
 Also for advance users considering configuration of the MTL838C from the
 Modbus master - a method that is not really recommended.

MTL838C Exception Responses
 Interpretation of exception responses for advanced users.

Scaling
 Points to consider for selecting scaling parameters within the MTL838C.

Modbus is a trademark of Schneider Automation Inc., North Andover, MA.

JBUS is a trademark of April.

2 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

2 QUICKSTART GUIDE

This quickstart guide is written for an MTL830C system based on an MTL831C
temperature input multiplexer transmitter with an MTL838C multiplexer receiver.

Before actual installation, it is recommended that new users initially set up a
simple system on the bench to become familiar with the MTL830C system. The
minimum hardware required for a test system is as follows:

 MTL831C Multiplexer transmitter.

 MTL838C Multiplexer receiver.

 MTL5553 Isolator (for hazardous area installations only).

In order to run a test the following equipment will be required:

A PC loaded with the MTL838C Configuration Software.

Power supply 24V @ 200mA, together with suitable cabling for the following

requirements:

 Data highway connections (see INM831C / INM838C).

 Power supply connections.

 USB cable.

The user will also need the following documentation for wiring information:

 INM831C MTL831C installation manual.

 INM838C MTL838C installation manual.

 INM838C-MBT MTL838C installation manual

Connect at least one sensor to an MTL831C.

Refer to the MTL838C Configuration Software Manual to configure and test
the system.

3 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

3 BACKGROUND TO THE MTL838C

3 .1 The analog-input multiplexer system

The MTL838C is an analog multiplexer receiver that is used with the MTL831C
hazardous area millivolt input multiplexer transmitter. The status of up to 32 analog
inputs may be communicated from the hazardous area to the safe area via a data
highway, comprised of a simple twisted pair - over distances up to 2km.

Each data highway must be protected by an MTL5553 digital isolator when the
inputs are located in a Zone 0 or 1 hazardous area. The MTL831C is typically used
with thermocouple and RTD inputs and is intrinsically safe. It can be mounted in
a Zone 0 or 1 hazardous area and will accept 16 inputs. For systems that do not
require Zone 0 or Zone 1 installation, the MTL5553 can be eliminated.

Up to two MTL831C transmitters can be combined on a single MTL838C receiver
input - up to a total of 32 analog inputs - as shown in Figure 1.

Figure 1 - MTL838C/MTL831C System Diagram

The MTL838C acts as a Modbus slave . It may be connected into any standard
Modbus network, with up to 31 MTL838C slaves on each network. If each unit
has its full complement of 32 analog inputs, the status of a total of 992 analog
inputs may be passed to a Modbus master using a single RS485 network. For the
MTL838C-MBT the single Ethernet connection allows for up to 32 analog inputs.

3 .2 Configuring the MTL838C

The MTL838C must first be configured using software on a PC and the USB
connection. This configures things such as the slave address and communication
parameters. After the initial configuration, the MTL838C is ready to communicate
with the Modbus host. At this point, the remaining configuration may be done in
one of two ways:

 • on-line via the Modbus link, direct from the host

 • off-line using the PC software and USB connection

Using the PC software is required for initial configuration and recommended for
first time configuration of the measuring channels.

MTL831C
transmitter 1

MTL831C
transmitter 2

mV

Sensors can be in Zone 0

 MTL5553
isolator/PSU

mV

MTL838C/
MTL838C-MBT

receiver PLC

RS485

RS485

 Modbus TCP*

or

*only available on MTL838C-MBT

19-30Vdc
Power

PC
(MTL 83xC Configurator Software)

USB

2x SPST
relay

contacts

DATA HIGHWAY (BUS)

Up to 16 THC, RTD,

and mV inputs
potentiometer

Up to 16 THC, RTD,

and mV inputs
potentiometer

Zone 0, 1 or 2
Hazardous Area

Safe Area

4 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

3 .3 On-line Configuration

Configuring the unit via the Modbus master and the network might seem to be the
simplest method at first sight, but there are a number of practical difficulties with this
configuration technique. This approach means that the user must deal with a number
of complex aspects which require a significant investment of the configurer’s time
before they are understood fully. A further difficulty may be a lack of the necessary
memory space within the Modbus master. If the configuration is likely to be changed
frequently it could even be necessary for the system designer to design specific ‘user
interface’ screens, such as those used by the PC software, to allow changes to be
made by operators. This would be a time consuming and costly task.

For most users, the attraction of being able to use the Modbus master to configure the
unit is that the configuration can be re-sent if the slave’s memory becomes corrupted.
Whilst this is true, it is not possible to avoid the difficulties (and costs) outlined earlier
and the decision to adopt a strategy of configuring via the Modbus master should be
arrived at only after due consideration.

A cost effective compromise would be to perform the initial configuration via the PC
software, and then read the configuration parameters stored in the MTL838C via the
host. The stored parameters could then be re-written to the MTL838C should the
configuration database ever become corrupt.

If a user intends to adopt the on-line configuration method, the calculation of
configuration parameters for storage in the master can be simplified, and the
possibility of ‘human error’ reduced, by using the PC software to input the required
data and data format, and then reading the stored values (encoded correctly in the
required data format) back from the MTL838C via Modbus. The user should still realize
that any subsequent alterations of the parameters will require further use of the PC
software.

3 .4 Off-line Configuration

Off-line configuration requires the use of the PC software briefly described below.
Once configured, the configuration parameters are stored in non-volatile memory
within the MTL838C.

3 .5 The PC software

By far the simplest method of configuring the MTL838C is using the PC software. This
software has been specifically designed to perform all of the complex calculations that
must be carried out, in order to configure the unit. These calculations are transparent
to the user, and this method provides a convenient and time efficient method.

Alternatively, as explained before, the master could read the configured parameters
after initial off-line configuration and these may then be stored within the host for use
in the event of a database failure.

5 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

3 .6 Interconnection of the MTL838C

The MTL838C may be connected to a Modbus host in a number of ways—as was
mentioned earlier it may be connected for multi-drop or point-to-point operation.

Two RS485 ports, 1 and 2, are provided on the MTL838C. As there are two ports the
unit can either be connected to a single Modbus master, with dual redundancy, or
connected to two separate Modbus hosts.

The MTL838C will respond on whichever RS485 connection the query is received,
and there is no restriction placed on the simultaneous use of both interfaces. The
slave address for each RS-485 port is set using the PC Software.

For the MTL838C-MBT there is only one Ethernet connection over which all Modbus
TCP traffic flows to/from the MTL838C-MBT at it’s given IP address. Section 7
will cover the configuration of the Ethernet module.Connect the Ethernet port to
your Modbus TCP network using a standard Ethernet cable (RJ45 connections).
Configuration of the Ethernet port on the MTL838C-MBT is covered in Section 7 of
the INM PC Modbus manual.

3 .7 Initialization mode
The MTL838C has two distinct modes of operation - normal and initialization.

It will always enter initialization mode during power-up. It can also be triggered by
the detection of internal hardware or software faults, or after receiving an instruction
from the host to reset some or all of the configuration registers.

During initialization, the unit will ignore all commands from the master.

The initialization period will take 1 or 2 seconds to complete all the necessary
operations and calculations. Following successful initialization, the unit will
automatically enter, or return to, normal operation mode.

If a corrupted configuration database is detected during initialization the unit will
revert to a set of default values, and on entering normal operation mode, will issue
exception responses when requested by the host to read input values. Exception
responses will continue to be issued until the unit is re-configured. The need to re-
configure the unit will remain even if the MTL838C is powered down and back up.

If a corrupted configuration is detected, the slave address may be reset. If this
occurs, the user must use the PC software to set the slave address.

3 .8 Slave, Transmitter and Input addressing

The following discusses the allocation of addresses to the slaves on the Modbus
network - including the MTL838C - and the allocation of addresses for the
transmitters and inputs connected to each MTL838C.

3 .8 .1 Addressing MTL838C slaves

Modbus allows slave addresses in the range 1 to 247. JBUS allows slave
addresses in the range 1 to 255. This is the only difference between the two
protocols. Since the MTL838C can only have addresses in the range 1 to 31, it will
work equally well with either protocol.

The Modbus address for each MTL838C slave is set via the PC software. For
reasons of security, it is not possible to set the address of the slave via the
Modbus host.

6 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

The address for each RS485 port on the MTL838C may be set from 1 to 255. This
facility allows the MTL838C to be connected to the same master twice or to two
different masters independently. There is no restriction regarding simultaneous
communication on both ports. The unit will respond via the port on which it
received the query.

Modbus TCP (Ethernet) does not allow multiple slaves on the same IP address. For
this reason the address becomes somewhat unimportant except that it is still used.
The address on the MTL838C-MBT which is set using the PC software must match
what the Master is using.

3 .8 .2 Addressing the transmitters of each MTL838C

Each MTL831C transmitter accepts up to 16 sensor inputs and there can be one
or two MTL831C transmitters connected to a single MTL838C. The address of
the MTL831C as seen by the MTL838C is determined by whether a jumper wire
is installed on the MTL831C. A jumper wire not installed gives the MTL831C an
address of ‘1’ and a jumper installed gives it an address of ‘2’. The following shows
the sensor numbers used by the MTL838C for a given MTL831C address.

MTL831C Address Sensor Numbers

1 0 - 15

1 32 CJC

2 16 - 31

2 33 CJC

Addressing of the MTL831C transmitters affects which sensor is given which
address in the MTL838C. For example, if only one MTL831C is connected to the
MTL838C but its address jumper is installed, it will be at transmitter address ‘2’ and
the sensor range will be 16 – 3, 1, 33.

It is also important that with two MTL831C’s connected to a single MTL838C, that
one and only one of them has the jumper installed. Otherwise they will both be at
the same address and communication between the MTL831’s and the MTL838C
will fail. Likewise, there can be no more than two MTL831C’s connected to a single
MTL838C.

CJC stands for Cold Junction Compensation and reports the average temperature
of the MTL831C circuit board. This is an average of two temperature sensors
and should not be used by the Modbus Host to cold junction compensate
thermocouples. Instead the thermocouple channels should be compensated by the
MTL831C by selecting the correct Input Type.

7 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 MODBUS FUNCTIONS SUPPORTED BY THE MTL838C

The following section describes the Modbus functions supported by the MTL838C:

CODE DESCRIPTION
01 Read coil status

02 Read input status

03 Read holding registers

04 Read input registers

05 Force single coil

06 Preset single register

07 Read exception status

08 Diagnostics

16 Preset multiple registers

All other functions in the range 0 to 127 will not be acted upon or will be ignored.
In some cases, when functions that are not supported, the MTL838C will respond
with an appropriate exception response.

Important Note:

This chapter contains a number of detailed tables that demonstrate the
construction of messages passed along the Modbus network. However, most
Modbus masters will have a user-interface that “shelters” the user from most
of these details, and will only require the slave address, the function code, the

initial coil or register location and the number of coils or registers to be read. The
reader need not concern themselves with much of the detail

presented here.

Some of the values are shown as hex and some as binary. The hex values are
given to describe the code or value that must be sent in the query and
the response.

For ASCII mode, the communication is shown as hex coded ASCII, which
demonstrates the additional level of character transmission required in this
mode - actual communication is, of course, as a binary signal. The binary code
for transmission in RTU mode is given directly, and it will be seen that this is a
simple encoding of the equivalent hex value. Note that the ASCII is shown for
completeness but the MTL838C does not support the ASCII mode.

In the body of the text, decimal values are used, so as to be consistent with the
numbering of the function codes in Revision ‘E’ of the Modbus specification.
Where the encoding of these decimal values in to hex makes them appear
differently in the table, the hex value is given in parenthesis - e.g. function code 10
(‘0A’ in hex). For simplicity, start, stop and parity bits are ignored throughout.

8 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 .1 READ COIL STATUS (function 01)

The READ COIL STATUS function requests that the slave reads the status of a specified
range of its single bit input/output flags and returns these to the master. The range of
flags to be read is given in the query, by the master indicating the address of the first flag
to be read and then total number of subsequent flags - including the first.

The example in the following table shows the query required to read the status of flags
00001 to 00009 of slave number 20 (14 in hex.). The start address and number of flags to
be read are always transmitted as two bytes - most significant bits (MSB) first, followed
by the least significant bits (LSB):

FIELD NAME HEX ASCII RTU
Slave address 14 31 34 14

Function 01 30 31 01

Starting address
MSB

00 30 30 00

Starting address
LSB

00 30 30 00

No. of locations
MSB

00 30 30 00

No. of locations
LSB

09 30 39 09

Error check - LRC CRC

Note:

Due to the anomaly in the address and flag locations in Modbus, the address
is always 1 less than the flag location. Thus flag ‘10001’ is addressed by the

hex value ‘00 00’.

The normal response to a READ COIL STATUS query contains the slave address,
the repeated function code, the number of data bytes that are being transmitted
in the response, the data bytes themselves and the error check.

The data bytes encode the status of the flags so that the status of the first flag
to be read forms the LSB of the first data byte. Subsequent flag states form the
next most significant bits of the first byte - thus if the master had requested the
status of 8 flags, the data would be transmitted in a single data byte, with the
LSB being the status of the first flag and the MSB being the status of the eighth.
This is continued so that the status of the ninth flag requested forms the LSB of
the second data byte.

9 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

If the master requests the status of a number of flags so that it is not possible
to return ‘complete’ 8-bit data bytes (e.g. if the master requests the status of 9
flags, as above, which would require one complete 8-bit byte and a single bit),
then the last data byte to be transmitted is ‘packed’ with ‘0’s in its MSBs.

The convention followed for the status is: 1 = ON; 0 = OFF.

A response to the query above would have the following format:

FIELD NAME HEX ASCII RTU
Slave address 14 31 34 14

Function 01 30 31 01

No. of Data Bytes 02 30 32 02

First Data Byte XX XX XX XX

Second Data Byte 0X 30 XX 0X

Error check - LRC CRC

Notes:

 1. The seven most significant bits of the second data byte in RTU mode are zero,
 as the query only requested the status of 9 inputs. The seven zeros were
 packed in to the response to allow the slave to return complete 8-bit data
 bytes. The same packing of zeros takes place in ASCII mode, which will result
 in the ASCII characters returned being 30 XX.

 2. The ‘byte count’ in the data field of the response shows the number of bytes
 returned in RTU mode, and half the number returned in ASCII.

 3. The possible ranges for the elements of the query and response for the
 MTL838C are:

 slave address 1 to 63

 number of locations that may be read 1 to 512

 number of data bytes returned 1 to 64

4 .2 READ INPUT STATUS (function 02)

The READ INPUT STATUS function requests that the slave reads the status of a
specified range of its single bit output flags and returns these to the master. The
range of inputs to be read is given in the query, by the master indicating the address
of the first input to be read and then total number of subsequent flags - including
the first.

The example below shows the query required to read the status of flags 10001 to
10030 of slave number 17 (11 in hex). The start address and number of flags to be
read are always transmitted as two bytes - most significant bits (MSB) first, followed
by the least significant bits (LSB):

10 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

FIELD NAME HEX ASCII RTU
Slave address 11 31 31 11

Function 02 30 32 02

Starting address
MSB

00 30 30 00

Starting address
LSB

00 30 30 00

No. of locations
MSB

00 30 30 00

No. of locations
LSB

1E 30 45 1E

Error check - LRC CRC

Note:

due to the anomaly in the addresses and input status locations in Modbus, the
address is always 1 less than the status location. Thus input ‘10001’ is addressed

by the hex value ‘00 00’.

The normal response to a READ INPUT STATUS comprises the slave address, the
repeated function code, the number of data bytes that are being transmitted in the
response, the data bytes themselves and the error check.

The data bytes encode the status of the inputs so that the status of the first input to
be read forms the LSB of the first data byte. Subsequent input states form the next
most significant bits of the first byte - thus if the master had requested the status of
8 inputs, the data would be transmitted in a single data byte, with the LSB being the
status of the first input and the MSB being the status of the eighth. This is continued
so that the status of the ninth input requested forms the LSB of the second data
byte.

If the master requests the status of a number of inputs so that it is not possible to
return ‘complete’ 8-bit data bytes (e.g. if the master requests the status of 9 inputs,
which would require one complete 8-bit byte and a single bit), then the last data byte
to be transmitted is ‘packed’ with ‘0’s in its MSBs.

The convention followed for the status is: 1 = ON; 0 = OFF.

A response to the query above would have the following format:

FIELD NAME HEX ASCII RTU
Address 11 31 31 11

Function 02 30 32 02

Number of bytes
Slave returned

04 30 34 04

First data byte XX XX XX XX

Second data byte XX XX XX XX

Third data byte XX XX XX XX

Fourth data byte XX XX XX 00XX XXXX

Error check - LRC CRC

11 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

Notes:

 1. The two most significant bits of the fourth data byte in RTU mode are zero,
 as the query only requested the status of 30 inputs. The two zeros were
 packed in to the response to allow the slave to return complete 8-bit data
 bytes. The same packing of zeros takes place in ASCII mode, but the value
 returned in ASCII cannot be determined without knowing the status of the last
 few data bits.

 2. The ‘byte count’ in the data field of the response shows the number of bytes
 returned in RTU mode, and half the number returned in ASCII.

 3. The possible ranges for the elements of the query and the response from
 the MTL838C are:

 slave address 1 to 63

 number of locations that may be read 1 to 512

 number of data bytes returned 1 to 64

4 .3 READ HOLDING REGISTERS (function 03)

The READ HOLDING REGISTERS function requests that the slave reads the binary
contents of a specified range of its 16-bit holding registers and returns the values to
the master. The range of registers to be read is given in the query, by the master
indicating the address of the first register and the total number of subsequent
registers to be read - including the first register.

The example below shows the query required to read the values held in holding
registers 40108 to 40110 from slave 17 (108 and 17 are 6C and 11 in hex).

FIELD NAME HEX ASCII RTU
Slave address 11 31 31 11

Function 03 30 33 03

Starting address
MSB

00 30 30 00

Starting address
LSB

6B 36 4B 6B

No. of registers
MSB

00 30 30 00

No. of registers
LSB

03 30 33 03

Error check - LRC CRC

Note:

Due to the anomaly in the addresses and register locations in Modbus, the
address is always 1 less than the register location. Thus register ‘40108’ is

addressed as 0107 (hex value ‘6B’).

12 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

The normal response to a READ HOLDING REGISTERS query comprises the
slave address, the repeated function code, the number of data bytes that are being
transmitted in the response, the data bytes themselves and the error check.

The data bytes encode the contents of the holding registers as two bytes per
register, with the binary contents right justified within each byte. For each register,
the first byte contains the high order bits and the second byte the low order bits.

A response to the query above would have the following format:

FIELD NAME HEX ASCII RTU
Slave address 11 31 31 11

Function 03 30 33 03

Number of bytes
returned

06 30 36 06

First data byte
(MSB 40108)

XX XX XX XX

Second data byte
(LSB 40108)

XX XX XX XX

Third data byte
(MSB 40109)

XX XX XX XX

Fourth data byte
(LSB 40109)

XX XX XX XX

Fifth data byte
(MSB 40110)

XX XX XX XX

Sixth data byte
(LSB 40110)

XX XX XX XX

Error check - LRC CRC

Notes:

 1. The ‘byte count’ in the data field of the response shows the number of bytes
 returned in RTU mode, and half the number returned in ASCII.

 2. The possible ranges for the elements of the query and the response from the
 MTL838C are:

 slave address 1 to 63

 number of registers that may be read 1 to 60

 number of data bytes returned 2 to 120
 (2x the number of registers)

13 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 .4 READ INPUT REGISTERS (function 04)

The READ INPUT REGISTERS function requests that the slave reads the binary
contents of a specified range of its 16-bit input registers and returns the values
to the master. The range of inputs to be read is given in the query, by the master
indicating the address of the first register and the total number of subsequent
registers to be read - including the first register.

The example below shows the query required to read the values held in input regis-

ter 30009 from slave 31 (1F in hex).

FIELD NAME HEX ASCII RTU
Slave address 1F 31 46 1F

Function 04 30 34 04

Starting address
MSB

00 30 30 00

Starting address
LSB

08 30 38 08

No. of points MSB 00 30 30 00

No. of points LSB 01 30 31 01

Error check - LRC CRC

Note:

Due to the anomaly in the addresses and register locations in Modbus, the
address is always 1 less than the register location. Thus register ‘30009’ is

addressed by the hex. value ‘00 08’.

The normal response to a READ INPUT REGISTERS query comprises the slave
address, the repeated function code, the number of data bytes that are being
transmitted in the response, the data bytes themselves and the error check.

The data bytes encode the contents of the input registers as two bytes per
register. For each register, the first byte contains the high order bits and the
second byte the low order bits.

A response to the query above would have the following format:

FIELD NAME HEX ASCII RTU
Slave address 1F 31 46 1F

Function 04 30 34 04

Number of bytes
returned

02 30 32 02

First data byte
(MSB 30009)

XX XX XX XX

Second data byte
(LSB 30009)

XX XX XX XX

Error check - LRC CRC

14 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

Notes:

 1. The ‘byte count’ in the data field of the response shows the number of bytes
 returned in RTU mode, and half the number returned in ASCII. .

 2. The possible ranges for the elements of the query and the response from the
 MTL838C are:

 slave address 1 to 63

 number of registers that may be read 1 to 60

 number of data bytes returned 2 to 120
 (2x the number of registers)

4 .5 FORCE SINGLE COIL (function 05)

The FORCE SINGLE COIL function requests that the slave sets a specified input/
output flag to a particular status. The address of the flag to be set is given in the
query. The status to which the flag must be set is provided by two data bytes. If the
flag is to be set to ‘1’, then the data bytes sent are FF 00. If the flag is to be set to ‘0’
the data bytes are 00 00.

The example below shows the query required to force the status of a flag with
address 10065 of slave 18 to ‘1’. (65 and 18 are ‘41’ and ‘12’ in hex).

FIELD NAME HEX ASCII RTU
Slave address 12 31 32 12

Function 05 30 35 05

Flag address MSB 00 30 30 00

Flag address LSB 40 34 30 40

Force data MSB FF 46 46 FF

Force data LSB 00 30 30 00

Error check - LRC CRC

The normal response to a FORCE SINGLE COIL query comprises the slave address,
an echo of the function code, echoes of the flag address and status request, and an
error check.

A response to the query above would have the following format:

FIELD NAME HEX ASCII RTU
Slave address 12 31 32 12

Function 05 30 35 05

Flag address MSB 00 30 30 00

Flag address LSB 40 34 30 40

Force data MSB FF 46 46 FF

Force data LSB 00 30 30 00

Error check - LRC CRC

15 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

The possible ranges for the elements of the query and the response from the
MTL838C are:

 slave address 1 to 63

 coil address 0000 to 65535

 data bytes returned FF00 or 0000 - as query

4 .6 PRESET SINGLE REGISTER (function 06)

The PRESET SINGLE REGISTER function requests that the slave writes specified
data in to a particular register. The address of the register to be written to is given in
the query. The data to be written is provided by two data bytes.

The example below shows the query required to ‘pre-set’ or write a register so that it
holds the value ‘FF FF’. The register location is 40003 of slave 1.

FIELD NAME HEX ASCII RTU
Slave address 01 30 31 01

Function 06 30 36 06

Register address
MSB

00 30 30 00

Register address
LSB

02 30 32 02

Pre-set data MSB FF 46 46 FF

Pre-set data LSB FF 46 46 FF

Error check - LRC CRC

The normal response to a PRESET SINGLE REGISTER query comprises the slave
address, an echo of the function code, echoes of the register address and the pre-
set data, and an error check.

A response to the query above would have the following format:

FIELD NAME HEX ASCII RTU
Slave address 01 30 31 01

Function 06 30 36 06

Register address
MSB

00 30 30 00

Register address
LSB

02 30 32 02

Pre-set data MSB FF 46 46 FF

Pre-set data LSB FF 46 46 FF

Error check - LRC CRC

16 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

The possible ranges for the elements of the query and the response from the
MTL838C are:

 slave address 1 to 63

 coil address 0 to 65535

 data bytes returned 0 to 65535 - as query

4 .7 READ EXCEPTION STATUS (function 07)

The READ EXCEPTION STATUS function requests that the slave reads the contents
of eight status bits within the slave and returns their values to the master. The
registers that are used to store these exception status bits are pre-defined, so that
the command itself is sufficient to locate the required locations.

In the MTL838C, the eight bits that are read correspond to the least significant bits
of the STATUS input register 30005.

 The example below shows the query required to read the exception status values for
slave 10 (0A in hex).

FIELD NAME HEX ASCII RTU
Slave address 0A 30 41 0A

Function 07 30 37 07

Error check - LRC CRC

The normal response to a READ EXCEPTION STATUS query comprises the slave
address, the repeated function code, a single data byte and the error check.

The data byte encodes the contents of the exception status bits in binary format,
with the status of the lowest bit as the LSB of the byte.

17 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

A response to the query above would have the following format:

FIELD NAME HEX ASCII RTU
Slave address 0A 30 41 0A

Function 07 30 37 07

Exception status
data

XX XX XX XX

Error check - LRC CRC

4 .8 DIAGNOSTICS (function 08)

The DIAGNOSTICS function has a number of tests to check the communication link
between the master and the slave. The subfunction code is transmitted as the first
two bytes of data following a ‘08’ function code in the query.

 Some of the tests specified by the subfunctions require the slave to return data in
the response to the query, others only require the slave to acknowledge receipt of
the response in the normal way. Responses to diagnostic functions will return a
repetition of the subfunction code as well as the ‘08’ function.

Most of the diagnostic subfunctions supported by the MTL838C are defined so that
the query must include two data bytes packed with zeros, immediately following the
subfunction code.

A large number of diagnostic codes are specified in revision ‘E’ of Modbus, not all of
which are supported by the MTL838C. The ones supported are listed below:

CODE DIAGNOSTIC SUBFUNCTION
00 00 Return query data

00 02 Return diagnostic register

00 10 Clear contents and diagnostic registers

00 11 Return bus message count

00 12 Return bus comms error count

00 13 Return bus exception count

The application of each of these subfunctions is discussed in detail in the following
sections.

18 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 .9 RETURN QUERY DATA (subfunction 00 00)

The diagnostic subfunction RETURN QUERY DATA requests the addressed slave to
return (loop back) an exact copy of the data contained in the query, to the master,
via the response.

An example of a query and response with this subfunction is given below. The
master requests slave number 4 to return the hexadecimal data ‘AA BB’.

The query:

FIELD NAME HEX ASCII RTU
Slave address 04 30 34 04

Function 09 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 00 30 30 00

Data MSB AA 41 41 AA

Data LSB BB 42 42 BB

Error check - LRC CRC

The response:

FIELD NAME HEX ASCII RTU
Slave address 04 30 34 04

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 00 30 30 00

Data MSB AA 41 41 AA

Data LSB BB 42 42 BB

Error check - LRC CRC

19 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 .10 RETURN DIAGNOSTIC REGISTER (subfunction 00 02)

The diagnostic subfunction RETURN DIAGNOSTIC REGISTER requests that the
slave reads the contents of the diagnostic register and returns the binary data
values to the master.

 The query sends two zero data bytes, following the data bytes containing the
subfunction code. The response returns two 8-bit data bytes containing the
register data.

The contents of the diagnostic register may be defined by the manufacturer,
according to the needs of each Modbus slave. For the MTL838C, the response
to this query returns the content one of the registers that contain the STATUS
data. The register returned is number 30006.

The following example shows the query and response generated when the
master requests diagnostic subfunction 00 02 from the slave with address 12
(‘0C’ in hex).

The query:

FIELD NAME HEX ASCII RTU
Slave address 0C 30 43 0C

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 02 30 32 02

Data MSB 00 30 30 XX

Data LSB 00 30 30 XX

Error check - LRC CRC

The response:

FIELD NAME HEX ASCII RTU
Slave address 0C 30 43 0C

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 02 30 32 02

Data MSB XX XX XX XX

Data LSB XX XX XX XX

Error check - LRC CRC

20 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 .11 CLEAR COUNTERS AND DIAGNOSTIC REGISTERS (subfunction 00 10)

The diagnostic subfunction CLEAR COUNTERS AND DIAGNOSTIC REGISTERS
requests that the slave clears a number of registers of their current values.
In some slaves the function is as expected, and both counter and diagnostic
registers are cleared. In some slaves (and the MTL838C is one of these) this
subfunction only clears the counter registers and leaves the diagnostic registers
untouched.

 The query sends two zero data bytes, following the data bytes containing the
subfunction code, and this is echoed in the response.

The following example shows the query and response generated when the
master requests diagnostic subfunction 00 10 (‘00 0A’ in hex.) from the slave
with address 02.

The query:

FIELD NAME HEX ASCII RTU
Slave address 02 30 32 02

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 0A 30 41 0A

Data MSB 00 30 30 00

Data LSB 00 30 30 00

Error check - LRC CRC

The response:

FIELD NAME HEX ASCII RTU
Slave address 02 30 32 02

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 0A 30 41 0A

Data MSB 00 30 30 00

Data LSB 00 30 30 00

Error check - LRC CRC

21 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 .12 RETURN BUS MESSAGE COUNT (subfunction 00 11)

The diagnostic subfunction RETURN BUS MESSAGE COUNT requests that the
slave returns to the master the contents of a register that is used to count the
number of messages that the slave has detected on the system since its last
restart, its last clear counters instruction, or since power-up - whichever was
the most recent.

The query sends two zero data bytes, following the data bytes containing the
subfunction code. The response returns two 8-bit data bytes containing the
register data.

The following example shows the query and response generated when the
master requests diagnostic subfunction 00 11 (‘00 0B’ in hex.) from the slave
with address 13 (‘0D’ in hex.).

The query:

FIELD NAME HEX ASCII RTU
Slave address 0D 30 44 0D

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 0B 30 42 0B

Data MSB 00 30 30 00

Data LSB 00 30 30 00

Error check - LRC CRC

The response:

FIELD NAME HEX ASCII RTU
Slave address 0D 30 44 0D

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 0B 30 42 0B

Message count
MSB

XX XX XX XX

Message count
LSB

XX XX XX XX

Error check - LRC CRC

22 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 .13 RETURN BUS COMMUNICATION ERROR COUNT (subfunction 00 12)

The diagnostic subfunction RETURN BUS COMMUNICATION ERROR COUNT
requests that the slave returns to the master the contents of a register that is
used to count the number of CRC (or LRC) errors that the slave has detected
on the system since its last restart, its last clear counters instruction, or since
power-up - whichever was the most recent.

The query sends two zero data bytes, following the data bytes containing the
subfunction code. The response returns two 8-bit data bytes containing the
register data.

The following example shows the query and response generated when the
master requests diagnostic subfunction 00 12 (‘00 0C’ in hex.) from the slave
with address 08.

The query:

FIELD NAME HEX ASCII RTU
Slave address 08 30 38 08

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 0C 30 43 0C

Data MSB 00 30 30 00

Data LSB 00 30 30 00

Error check - LRC CRC

The response:

FIELD NAME HEX ASCII RTU
Slave address 08 30 38 08

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 0C 30 43 0C

Data MSB XX XX XX XX

Data LSB XX XX XX XX

Error check - LRC CRC

23 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 .14 RETURN BUS EXCEPTION ERROR COUNT (subfunction 00 13)

The diagnostic subfunction RETURN BUS EXCEPTION ERROR COUNT
requests that the slave returns to the master the contents of a register that
is used to count the number of exception errors (i.e. the number of times the
slave has issued exception responses) that the slave has returned since its
last restart, its last clear counters instruction, or since power-up - whichever
was the most recent.

The query sends two zero data bytes, following the data bytes containing the
subfunction code. The response returns two 8-bit data bytes containing the
register data.

 The following example shows the query and response generated when the
master requests diagnostic subfunction 00 13 (‘00 0D’ in hex.) from the slave
with address 06.

The query:

FIELD NAME HEX ASCII RTU
Slave address 06 30 36 06

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 0D 30 44 0D

Data MSB 00 30 30 00

Data LSB 00 30 30 00

Error check - LRC CRC

The response:

FIELD NAME HEX ASCII RTU
Slave address 06 30 36 06

Function 08 30 38 08

Subfunction MSB 00 30 30 00

Subfunction LSB 0D 30 44 0D

Data MSB XX XX XX XX

Data LSB XX XX XX XX

Error check - LRC CRC

24 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

4 .15 PRESET MULTIPLE REGISTERS (function 16)

The PRESET MULTIPLE REGISTERS function requests that the slave writes
specified data in to a range of registers. The range of registers to be written
is identified by the master which indicates the location of the first register
and then the total number of registers to be written - including the first.

The example below shows the query required to ‘pre-set’ or write two
registers so that they both contain the value ‘FF FF’. The first register location
is 40003 of slave 1. Function 16 is ‘10’ in hex.

FIELD NAME HEX ASCII RTU
Slave address 01 30 31 01

Function 10 31 30 10

Register address
MSB

00 30 30 00

Register address LSB 02 30 32 02

Register number
MSB

00 30 30 00

Register number LSB 02 30 32 02

Number of bytes to
follow

04 30 34 04

1st preset data MSB FF 46 46 FF

1st preset data LSB FF 46 46 FF

2nd preset data MSB FF 46 46 FF

2nd preset data LSB FF 46 46 FF

Error check - LRC CRC

The normal response to a PRESET MULTIPLE REGISTERS query comprises
the slave address, an echo of the function code, echoes of the register
address and number of registers written, and an error check.

A response to the query above would have the following format:

FIELD NAME HEX ASCII RTU
Slave address 01 30 31 01

Function 10 31 30 10

Register address
MSB

00 30 30 00

Register address LSB 02 30 32 02

Register number
MSB

00 30 30 00

Register number LSB 02 30 32 02

Error check - LRC CRC

The possible ranges for the elements of the response from an MTL838C are:

 slave address 1 to 63

 number of registers 0 to 60

25 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

5 EXCEPTION RESPONSES SUPPORTED BY THE MTL838C

An MTL838C slave will issue one of five available exception responses if
a message is received correctly (i.e. it passes the error checking), but the
slave then finds it is unable to perform the required operation. The following
section describes the construction of exception responses in general, and
describes in detail those exception responses that are supported by the
MTL838C.

 The following exception responses are supported by the MTL838C:

ILLEGAL FUNCTION Response 01

ILLEGAL DATA ADDRESS Response 02

ILLEGAL DATA VALUE Response 03

SLAVE DEVICE FAILURE Response 04

NEGATIVE ACKNOWLEDGE Response 07

Note that if a slave receives a message which does not pass the error
checking employed, it will discard the message and will not issue a response.
This prevents a slave from carrying out operations that have either not been
translated correctly or which were intended for another slave. The master
employs a ‘time-out’ check, and if it has not received a response after a given
time period, it will re-try or take other appropriate action.

5 .1 Construction of exception responses

In a normal response, the slave exactly echoes the function code received
from the master. In an exception response the slave returns to the master an
echo of the function code received, but with its MSB set to ‘1’. The master
can therefore identify that an exception response is being returned, and
identify the function code that was received by the slave. This is possible as
there are less than 128 (or 80 hex) function codes defined which, as binary
8-bit numbers, must always have a ‘0’ as their MSB.

The example below shows the first few bytes of an exception response issued
after slave 9 correctly received a function code ‘01’ that it was then unable to
perform.

FIELD NAME HEX ASCII RTU
Slave address 09 30 39 09

Function
(an exception for 01)

81 38 31 81

The exception response to function code ‘01’ is perhaps most easily
understood when examining the result in RTU mode, where it is clear that the
MSB has been set to ‘1’.

Further data is passed to the master via the first bytes of the response’s data
field. The bytes returned are referred to as the ‘exception code’ and these are
used to provide the master with additional information regarding the nature of
the exception.

The exception code that is generated by the slave for any particular event can
be determined by the manufacturer of the device. It is normal, however, to
try and use the exception codes so that the code name is as near as possible,
in meaning, to the event that has caused the exception.

26 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

The example below shows the full exception response for the example used
earlier - with the reason for the exception being identified as exception code
‘02’. This is the ‘ILLEGAL DATA ADDRESS’, which would typically be used if
the master had requested the slave to read a non-existent status location.

FIELD NAME HEX ASCII RTU
Slave address 09 30 39 09

Function
(an exception for 01)

81 38 31 81

Exception code 02 30 32 02

Error check - LRC CRC

The sections below describe the exception codes supported by the MTL838C
in detail.

5 .2 ILLEGAL FUNCTION (exception code 01)

The ILLEGAL FUNCTION exception code is used to inform the master that the
function code received by the slave is not an allowable function for that slave.

An example of such a request would be the function code FORCE MULTIPLE
COILS (function 15) sent to an MTL838C. This function is not supported by the
MTL838C (because the design of the device does not require groups of coils to
be set at a given moment). If the master were to send a request containing such
a function code, an exception code ‘01’ would be returned. The example below
shows the exception response returned by such a slave, with address ‘04’:

FIELD NAME HEX ASCII RTU
Slave address 04 30 34 04

Function
(an exception for 01)

95 39 35 95

Exception code 01 30 31 01

Error check - LRC CRC

5 .3 ILLEGAL DATA ADDRESS (exception code 02)

27 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

The ILLEGAL DATA ADDRESS exception code is used to inform the master that an
address used in the query is not available within the slave.

An example of such a request would be the function code READ INPUT
REGISTERS (‘04’) with the number of registers to be read given as 61, sent to
an MTL838C. The MTL838C has a communication buffer that is only capable of
containing sixty input registers, and a request to read more than this number could
not be handled by the unit. The example below shows the exception response
returned by such a slave, with address ‘09’:

FIELD NAME HEX ASCII RTU
Slave address 09 30 39 09

Function
(an exception for 01)

84 38 34 84

Exception code 02 30 32 02

Error check - LRC CRC

5 .4 ILLEGAL DATA VALUE (exception code 03)

The ILLEGAL DATA VALUE exception code is used to inform the master that a value
used in the query is not valid for the function requested form that slave.

An example of such a request would be the function code for DIAGNOSTICS with a
diagnostic code of ‘01’, sent to an MTL838C. The MTL838C does not support this
diagnostic code, and would return the exception code above. The example below
shows the exception response returned by such a slave, with address ‘06’:

FIELD NAME HEX ASCII RTU
Slave address 06 30 36 06

Function
(an exception for 01)

88 38 38 88

Exception code 03 30 33 03

Error check - LRC CRC

5 .5 SLAVE DEVICE FAILURE (exception code 04)

28 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

The SLAVE DEVICE FAILURE exception code is used to inform the master that an
error occurred in the slave while it was attempting to carry out the action required by
the query.
 An example of such a failure would be corruption of the configuration data stored
by the MTL838C. The MTL838C would return a ‘SLAVE DEVICE FAILURE’ excep-
tion code if the configuration data was found to be corrupted and the master issued
a request to READ INPUT REGISTERS ‘04’ for registers that contained input status
data. The example below shows the exception response returned by such a slave,
with address ‘03’:

FIELD NAME HEX ASCII RTU
Slave address 03 30 33 03

Function
(an exception for 01)

84 38 34 84

Exception code 04 30 34 04

Error check - LRC CRC

5 .6 NEGATIVE ACKNOWLEDGE (exception code 07)

The NEGATIVE ACKNOWLEDGE exception code is used to inform the master that
the slave cannot perform the requested function.

An example of such a failure would be attempting to write data in to a register that
was ‘write disabled’. The MTL838C has a facility whereby the configuration data
may be protected against over-writing. If this facility is used and the Modbus master
attempts to write in to the configuration registers, then the exception code ‘07’ will
be returned. The following table shows the exception code returned by such a slave,
with address 04.

FIELD NAME HEX ASCII RTU
Slave address 04 30 34 04

Function
(an exception for 01)

86 38 36 86

Exception code 07 30 37 07

Error check - LRC CRC

29 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

6 INPUT STATUS FLAGS AND REGISTERS

The input status flags and input registers are used to store information that the
master will want to read from the MTL838C. The data stored by the MTL838C is
mapped twice. Once to the input status flags and again to the input registers.
The user can choose which of the two data stores is the simplest to read from, given
the application in question.

6 .1 Mapping of input status flags and input registers

The tables below show the mapping of the flag and register locations used by the
MTL838C. The tables show the mappings with IEEE data format selected and with
non-IEEE.

Mapping for IEEE data format

INPUT STATUS
FLAG LOCATION

INPUT REGISTER
LOCATION

NAME

DATA TYPE

10001 - 10032 30001 - 30002 838_REV ASCII

10033 - 10064 30003 - 30004 831_REV ASCII

10065 - 10096 30005 - 30006 STATUS binary

10097 - 10128 30007 - 30008 Not Used binary

10129 -10160 30009 - 30010 HIGH_ALARM binary

10161 - 10192 30011- 30012 LOW_ALARM binary

10193 - 10224 30013 - 00014 OPEN_ALARM binary

10225 - 10256 30015 - 30016 INPUT_1 IEEE

10257 - 10288 30017 - 30018 INPUT_2 IEEE

10289 - 10320 30019 - 30020 INPUT_3 IEEE

10321 - 10352 30021 - 30022 INPUT_4 IEEE

10353 - 10384 30023 - 30024 INPUT_5 IEEE

10385 - 10416 30025 - 30026 INPUT_6 IEEE

10417 - 10448 30027 - 30028 INPUT_7 IEEE

10449 - 10480 30029 - 30030 INPUT_8 IEEE

10481 - 10512 30031 - 30032 INPUT_9 IEEE

10513 - 10544 30033 - 30034 INPUT_10 IEEE

10545 - 10576 30035 - 30036 INPUT_11 IEEE

10576 - 10608 30037 - 30038 INPUT_12 IEEE

10609 - 10640 30039 - 30040 INPUT_13 IEEE

10640 - 10671 30041 - 30042 INPUT_14 IEEE

10673 - 10704 30043 - 30044 INPUT_15 IEEE

10705 - 10736 30045 - 30046 INPUT_16 IEEE

10737 - 10768 30047 - 30048 INPUT_17 IEEE

10769 - 10800 30049 - 30050 INPUT_18 IEEE

10801 - 10832 30051 - 30052 INPUT_19 IEEE

10833 - 10864 30053 - 30054 INPUT_20 IEEE

10865 - 10896 30055 - 30056 INPUT_21 IEEE

10897 - 10928 30057 - 30058 INPUT_22 IEEE

continued

30 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

INPUT STATUS
FLAG LOCATION

INPUT REGISTER
LOCATION

NAME

DATA TYPE

10929 - 10960 30059 - 30060 INPUT_23 IEEE

10961 - 10992 30061 - 30062 INPUT_24 IEEE

10993 - 11024 30063 - 30064 INPUT_25 IEEE

11025 - 11056 30065 - 30066 INPUT_26 IEEE

11057 - 11088 30067 - 30068 INPUT_27 IEEE

11089 - 11120 30069 - 30070 INPUT_28 IEEE

11121 - 11152 30071 - 30072 INPUT_29 IEEE

11153 - 11184 30073 - 30074 INPUT_30 IEEE

11185 - 11216 30075 - 30076 INPUT_31 IEEE

11217 - 11248 30077 - 30078 INPUT_32 IEEE

11249 - 11280 30079 - 30080 CJ1 IEEE

11281 - 11312 30081 - 30082 CJ2 IEEE

Note:

When addressing the locations of the data given above, remember the
anomaly that exists in Modbus, between the address passed by the function

and the location within the slave. Thus locations 10001 - 10032 are addressed
by the READ INPUT STATUS function with addresses 0000 - 0031, etc.

The contents of each location are explained more fully in the sections below.

Mapping for non-IEEE data format

INPUT STATUS
FLAG LOCATION

INPUT REGISTER
LOCATION

NAME

DATA TYPE

10001 - 10032 30001 -30002 838_REV ASCII

10033 - 10064 30003 - 30004 831_REV ASCII

10065 - 10096 30005 - 30006 STATUS binary

10097 - 10128 30007 - 30008 Not Used binary

10129 -10160 30009 - 30010 HIGH_ALARM binary

10161 - 10192 30011 - 30012 LOW_ALARM binary

10193 - 10224 30013 - 30014 OPEN_ALARM binary

10225 - 10240 30015 INPUT_1 non-IEEE

10241 - 10256 30016 INPUT_2 non-IEEE

10257 - 10272 30017 INPUT_3 non-IEEE

10273 -10288 30018 INPUT_4 non-IEEE

10289 - 10304 30019 INPUT_5 non-IEEE

10305 - 10320 30020 INPUT_6 non-IEEE

10321 - 10336 30021 INPUT_7 non-IEEE

10337 - 10352 30022 INPUT_8 non-IEEE

10353 - 10368 30023 INPUT_9 non-IEEE

10369 - 10384 30024 INPUT_10 non-IEEE

10385 - 10400 30025 INPUT_11 non-IEEE

10401 - 10416 30026 INPUT_12 non-IEEE

10417 - 10432 30027 INPUT_13 non-IEEE

10433 - 10448 30028 INPUT_14 non-IEEE

continued

31 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

10449 - 10464 30029 INPUT_15 non-IEEE

10465 - 10480 30030 INPUT_16 non-IEEE

10481 - 10496 30031 INPUT_17 non-IEEE

10497 - 10512 30032 INPUT_18 non-IEEE

10513 - 10528 30033 INPUT_19 non-IEEE

10529 - 10544 30034 INPUT_20 non-IEEE

10545 - 10560 30035 INPUT_21 non-IEEE

10561 - 10576 30036 INPUT_22 non-IEEE

10577 - 10592 30037 INPUT_23 non-IEEE

10593 - 10608 30038 INPUT_24 non-IEEE

10609 - 10624 30039 INPUT_25 non-IEEE

10625 - 10640 30040 INPUT_26 non-IEEE

10641 - 10656 30041 INPUT_27 non-IEEE

10657 - 10672 30042 INPUT_28 non-IEEE

10673 - 10688 30043 INPUT_29 non-IEEE

10689 - 10704 30044 INPUT_30 non-IEEE

10705 - 10720 30045 INPUT_31 non-IEEE

10721 - 10736 30046 INPUT_32 non-IEEE

10737 - 10752 30047 CJ1 non-IEEE

10753 - 10768 30048 CJ2 non-IEEE

NOTE

When addressing the locations of the data given above, remember the anomaly

that exists in Modbus, between the address passed by the function and the

location within the slave. Thus locations 10001 - 10032 are addressed by the READ

INPUT STATUS function with addresses 0000 - 0031, etc.

The contents of each location are explained more fully in the sections below.

6 .2 Revision number of 838 software

INPUT STATUS FLAG LOCATIONS: 10001 -10032

INPUT REGISTER LOCATIONS: 30001 -30002

Four ASCII characters are provided which identify the firmware revision number:

‘838_REV’ of the firmware running on the MTL838C. This firmware controls the
entire MTL838C. The revision is stored in register location 30001 and is a letter (high
byte) followed by a number (low byte). Register 30002 is always filled with blanks.

32 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

6 .3 Revision number of 831 software

INPUT STATUS FLAG LOCATIONS: 10033 -10064

INPUT REGISTER LOCATIONS: 30003 -30004

Four ASCII characters are provided which identify the firmware revision number:

‘831_REV’ of the firmware running on the transmitter(s). This firmware is running
on the processor in the MTL831C that communicates with the MTL838C. There are
two other processors within the MTL831C that make the sensor measurements.
The firmware revision for these processors is available only by using the PC software
and a USB cable connected to the MTL838C. The first 2 ASCII characters is the
revision number for transmitter ‘1’ (30003) and the second two characters are
the revision number for transmitter ‘2’ (30004). The revision is a letter (high byte)
followed by a number (low byte).

6 .4 MTL838C status information

INPUT STATUS FLAG LOCATIONS: 10065 - 10096

INPUT REGISTER LOCATIONS: 30005 - 30006

 A total of 16 STATUS bits are provided which inform the master of the overall status of
the MTL838C. The table below shows the meaning of each bit, with the input status
flag and the input register locations shown for each bit.

INPUT STATUS
FLAG LOCATION

INPUT REGISTER
LOCATION

NAME

10096 30006: bit 0 Error flag - set when any of the status
bits '8' to '15' are set to '1'

10095 30006: bit 1 Unused – 0

10094 30006: bit 2 Unused – 0

10093 30006: bit 3 Invalid database detected

10092 30006: bit 4 Unused – 0

10091 30006: bit 5 Unused – 0

10090 30006: bit 6 Highway OK

10089 30006: bit 7 Unused – 0

10088 30006: bit 8 Transmitter 1 failed

10087 30006: bit 9 Transmitter 2 failed

10086 30006: bit 10 Unused – 0

10085 30006: bit 11 CJC Range Error

10084 30006: bit 12 CJC Delta Error

10083 30006: bit 13 Open circuit detected on any input

10082 30006: bit 14 Low alarm detected on any input

10081 30006: bit 15 High alarm detected on any input

33 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

All status bits are set to logic ‘1’ for the ‘true’ condition.

The functions ‘READ EXCEPTION STATUS’ and ‘RETURN DIAGNOSTICS REGISTER’
are defined so that they read part of the STATUS register. These functions may be
more convenient methods of accessing status data.

6 .5 ‘Error flag’

INPUT STATUS FLAG LOCATION: 10096

INPUT REGISTER LOCATION: 30006: bit 0

 The ‘Error flag’ is set when any of the bits ‘8’ to ‘15’ are set to ‘1’. This single bit
then shows that there is a fault with some part of the system. Monitoring this bit
alone can allow the Modbus master to maintain a check on the correct operation
of the slave and to monitor for any alarms on the slaves inputs without absorbing
a significant amount of communication time. If this ‘Error flag’ is monitored in this
way, once an error has been detected, the master can quickly establish which areas
to investigate by examining the whole of the 30006 status register. The master can
then take appropriate action according to which of the other status bits has caused
the ‘Error flag’ to be set.

6 .6 ‘Invalid database’

INPUT STATUS FLAG LOCATION: 10093

INPUT REGISTER LOCATION: 30006: bit 3

The ‘Invalid database’ flag is set when a fault is detected in the configuration database.

6 .7 ‘Highway OK’

INPUT STATUS FLAG LOCATIONS: 10090

INPUT REGISTER LOCATIONS: 30006: bits 6

The ‘Highway OK’ bit indicates that communication is taking place successfully on
the highway between the MTL838C and the MTL831C(s). This corresponds to the
illumination of the “Comm” LED of the unit.

34 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

6 .8 ‘Transmitter failed’

INPUT STATUS FLAG LOCATIONS: 10087 - 10088

INPUT REGISTER LOCATIONS: 30006: bits 8 - 9

The ‘Transmitter failed’ bits are set when the MTL838C is not receiving data from a
particular transmitter. The bits will only be set when a transmitter is identified as being
present by the configuration parameter N_TY_MPX (see pages 40&43). This defines
the number of Tx devices connected to the MTL838C.

6 .9 ‘CJC Range Error’

INPUT STATUS FLAG LOCATIONS: 10085

INPUT REGISTER LOCATIONS: 30006: bits 11

The ‘CJC Range Error’ bit indicates that one of the MTL831Cs appears to be installed
in a location outside of its specified operating temperature – or something has failed in
the CJC measuring electronics. Use the PC Software to determine which MTL831C
is in error.

6 .10 ‘CJC Delta Error’

INPUT STATUS FLAG LOCATIONS: 10084

INPUT REGISTER LOCATIONS: 30006: bits 12

The ‘CJC Delta Error’ bit indicates that there is an unexpected differential between
the two CJC temperature measuring devices on one of the MTL831Cs – use the PC
Software to determine which unit is in error.

6 .11 ‘Open circuit -’, ‘Low alarm -’ and ‘High alarm detected on any input’

INPUT STATUS FLAG LOCATIONS: 10081 - 10083

INPUT REGISTER LOCATIONS: 30006: bits 13 - 15

The ‘Open circuit -’, ‘Low alarm -’ and ‘High alarm detected on any circuit’ flags will be
set if any of the inputs from the field are, respectively, open circuit or showing low or
high alarms.

35 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

6 .12 Not Used

INPUT STATUS FLAG LOCATIONS: 10097 - 10128

INPUT REGISTER LOCATIONS: 30007 - 30008

These registers are not used and will always return zeros.

6 .13 High alarm status register

INPUT STATUS FLAG LOCATIONS: 10129 - 10160

INPUT REGISTER LOCATIONS: 30009 - 30010

The ‘HIGH_ALARM’ flags and register bits indicate the presence of a high alarm on the
inputs to the field transmitters. Each of the possible 32 inputs is allocated a bit within
the 32 bits and two registers.

The bits are arranged so that a high alarm on input 1 will set the input status flag
at location 10129 and the most significant bit of register 30009 and so on through
the 32 inputs, with the most significant bit of register 30010 (and location 10145)
corresponding to input 17.

 If any of the above bits are set to ‘1’, then the associated bit in the STATUS register
will also be set to ‘1’.

6 .14 Low alarm status register

INPUT STATUS FLAG LOCATIONS: 10161 - 10192

INPUT REGISTER LOCATIONS: 30011 - 30012

The ‘LOW_ALARM’ flags and register bits indicate the presence of a low alarm on the
inputs to the field transmitters. Each of the possible 32 inputs is allocated a bit within
the 32 bits and two registers.

The bits are arranged so that a low alarm on input 1 will set the input status flag
at location 10161 and the most significant bit of register 30011 and so on through
the 32 inputs, with the most significant bit of register 30012 (and location 10167)
corresponding to input 17.

If any of the above bits are set to ‘1’, then the associated bit in the STATUS register
will also be set to ‘1’.

36 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

6 .15 Open alarm status register

INPUT STATUS FLAG LOCATIONS: 10193 - 10224

INPUT REGISTER LOCATIONS: 30013 - 30014

The ‘OPEN_ALARM’ flags and register bits indicate the presence of an open circuit
alarm on the inputs to the field transmitters. Each of the possible 32 inputs is allocated
a bit within the 32 bits and two registers.

The bits are arranged so that an open alarm on input 1 will set the input status flag
at location 10193 and the most significant bit of register 30013 and so on through
the 32 inputs, with the most significant bit of register 30014 (and location 10209)
corresponding to input 17.

If any of the above bits are set to ‘1’, then the associated bit in the STATUS register
will also be set to ‘1’.

Once an open alarm has been detected by the MTL838C, the safety drive for each
input will be engaged to drive the input high or low.

6 .16 Scaled analog input value

With IEEE format data:

INPUT STATUS FLAG LOCATIONS: 10225 - 11248

INPUT REGISTER LOCATIONS: 30015 - 30078

With non-IEEE format data:

INPUT STATUS FLAG LOCATIONS: 10225 - 10736

INPUT REGISTER LOCATIONS: 30015 - 30046

The scaled analog values of each input are stored in the registers ‘INPUT_1’ to
‘INPUT_32’.

If an IEEE data format is chosen, the value of each input is stored in 32 sequential flag
locations and is also mapped to two input registers.

If a non-IEEE format is chosen, then the system uses 16 sequential flag locations and
a single input register to store the value of each input.

The convention adopted for mapping of data in to the flags and registers is a function
of the data format selected. Data format ‘1’ maps the most significant bits of the data
value in to the least significant register location (and the least significant bit in to the
highest register location). All other data formats map the most significant bit of the
data value in to the lowest flag location (and the most significant bit of the lowest
register location).

37 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

6 .17 Cold junction temperature of MTL831B’s

With IEEE format data:

INPUT STATUS FLAG LOCATIONS: 11249 - 11312

INPUT REGISTER LOCATIONS: 30079 - 30082

With non-IEEE format data:

INPUT STATUS FLAG LOCATIONS: 10737 - 10768

INPUT REGISTER LOCATIONS: 30047 - 30048

The temperature of the cold junction (CJ) in each of the MTL831Cs connected to the
MTL838C is stored - in either IEEE or non-IEEE data format - in the flag and register
locations shown above. The first flag location contains the most significant bit of the
temperature of the first MTL831C (CJ1) and so on.

If a non-IEEE data format is selected, the CJ temperature is stored in tenths of
degrees. Further, if the data format chosen is unsigned, an offset of 40° is applied by
the MTL838C, so that CJ temperatures down to -40° can be reported. Hence, for non-
IEEE unsigned data format, a stored value of 678 corresponds to a temperature of:

 678 = 10 ((I/P + 40) - 0) + 0

 67.8 = I/P + 40

 I/P = 67.8 -40 = 27.8°

NOTE

The ‘degrees’ refer to whichever unit of temperature (°C, °F or °K) is specified in

Holding Register 40030.

38 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

7 COIL STATUS FLAGS

A small number of single bit coil status flags are set aside for the Modbus master
to read from and write to. The facility to write to these flags is not disabled by the
internal settings which disable the configuration parameters write facility.

The coil status flags are only of use when the configuration of the MTL838C is being
done via the Modbus host.

NOTE

The flags that reset the unit to factory default values cause the unit to perform a
significant number of internal operations. This process can take several seconds,

and during this time the unit is unable to communicate with the master.

7 .1 Mapping of coil status flags

The mapping of the six coil status flags within the MTL838C is shown below:

COIL STATUS
FLAG LOCATION

NAME

FUNCTION

00001 CSTORE Not used

00002 DFT831 configure to factory defaults, mV inputs

00003 DFT832 Not used

00004 CONFIRM confirms configuration completed
correctly

00005 FMT831 as DFT831, without re¬setting data
format

7 .2 Set factory defaults for mV inputs

COIL STATUS FLAG LOCATION: 00002

Writing a ‘1’ into the coil status flag location DFT831 will cause the MTL838C to
re-set itself and to install factory default values in to its configuration database,
assuming that the field inputs are mV inputs to MTL831C units.

 On receiving the instruction to force the coil status flag DFT831 to a logic ‘1’, the
MTL838C will issue a response confirming receipt of the instruction and then enter
‘initialization mode’ for several seconds. During this time, the unit is unable to
communicate with the master and any queries addressed to the unit will be ignored.

The default parameters are:

1 MTL831C transmitter

Data format type IEEE754 (type 0)

All inputs mV type

IPZERO and OPZERO scaling parameters 0

GAIN parameters set to ‘1’, i.e. values read directly as mV and degrees C.

39 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

7 .3 Confirm database correctly configured

COIL STATUS FLAG LOCATION: 00004

A hazard exists with the MTL838C, whereby it would be possible for the unit to
become re-configured, and for the master to be unaware that this had taken place.
This could arise following a ‘power-up’ sequence in which the MTL838C detects that
its stored CONFIGURATION DATABASE has become corrupted (so that the factory
default values for configuration are used instead).

To protect against this risk, once such a re-configuration has occurred, the slave will
respond to any READ DATA requests by issuing an EXCEPTION response. Only
when the master writes a logic ‘1’ to the CONFIRM flag location will the slave allow
data to be read.

The requirement to write to the CONFIRM flag location CONFIRM remains, even if
the unit is subjected to further power-down and power-up cycles.

 A similar precaution must be taken to prevent the master reading data when it has
instructed the slave to use a new DATAFORMAT, but before the CONFIGURATION
DATABASE has been re-written in the new DATAFORMAT.

Again, to prevent the master reading data that is not configured correctly, any READ
DATA queries will give rise to EXCEPTION responses, until the CONFIRM flag is set
to ‘1’. The requirement to write to the CONFIRM flag location remains, even if the
unit is subjected to further power-down and power-up cycles.

NOTE

Confirmation of a change in configuration database can also be achieved with
the PC software. The ‘sign-off’ operation in PC software, issues an instruction

equivalent to ‘CONFIRM’.

7 .4 Set factory defaults for mV inputs, leaving DATAFORMAT unchanged

COIL STATUS FLAG LOCATION: 00005

Writing a logic ‘1’ to status flag FMT831 performs the same operation as DFT831,
but leaves the DATAFORMAT register unaltered. This allows the unit to be reset
to factory default values, and then allows the master to write a known DATABASE
CONFIGURATION in the required format of data.

40 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

8 HOLDING REGISTERS

The holding registers of the MTL838C are used almost exclusively to hold data
regarding the configuration of the unit. A few unused registers are available for
retaining other data if required. All configuration database parameters are stored in
non-volatile memory.

The layout of the holding registers is summarized in the table below:

HOLDING
REGISTERS

NAME

DATA
TYPE

DESCRIPTION

40001 - 40002 CSUMREF B Not Used

40003 - 40015 SPARE A unused registers

40016 DATAFMT B output data format

40017 - 40028 TAG A tag string - defined by user

40029 N_TY_MPX B number and type of
transmitters

40030 UNIT B units of temperature to use

40031 POWER B frequency of power supply

40032 CFGTEST B Not Used

40033 IPTYSF_1 DF input type and safety drive,
input 1

: : : :

40064 IPTYSF_32 DF input type and safety drive,
input 32

40065 - 40066 IPZERO_1 DF zero for input 1

: : : :

40127 - 40128 IPZERO_32 DF zero for input 32

40129 - 40130 GAIN_1 DF gain for input 1

: : : :

40191 - 40192 GAIN_32 DF gain for input 32

40193 - 40194 HA_1 DF high alarm for input 1

: : : :

40255 - 40256 HA_32 DF high alarm for input 32

40257 - 40258 LA_1 DF low alarm for input 1

: : : :

40319 - 40320 LA_32 DF low alarm for input 32

40321 - 40322 OPZERO_1 DF output zero for input 1

: : : :

40383 - 40384 OPZERO_32 DF output zero for input 32

8 .1 Configuration checksum reference

HOLDING REGISTER LOCATION: 40001 - 40002

These holding registers have no defined use. ASCII data can be written to and read
from these registers, according to the needs of each user.

41 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

8 .2 Unused holding registers

HOLDING REGISTER LOCATIONS: 40003 - 40015

A number of holding registers are provided that have no defined use. ASCII data can
be written to and read from these registers, according to the needs of each user.
A typical example of the use of these registers would be to store the last date of
calibration check.

8 .3 Data format selection

HOLDING REGISTER LOCATION: 40016

The DATAFMT register is used to select the format of the data stored by the MTL838C
in those holding registers identified by ‘DF’ in the tables and all of its sensor input
registers. (In the tables showing the contents of each register, those which are
governed by DATAFMT are marked ‘DF’).

When a new value is written to the DATAFMT register, the scaling parameters become
invalid as they conformed to the previously set data format. Any attempts to read data
from these registers will cause the unit to issue an EXCEPTION response, until the
CONFIRM flag is set to ‘1’ (after the master has re-written the scaling parameters in
the new data format).

The table below shows the decimal values that must be written (in binary) to the
DATAFMT register to select each of the defined data formats:

DATA
FMT

DESCRIPTION
OF FORMAT

value stored
in register

decimal value

0 IEEE single precision,
floating point. Most
significant data in lowest
register address

0 to FFFFH -3.4x1038 to
+3.4x1038

1 IEEE single precision,
floating point. Most
significant data in highest
register address

0 to FFFFH -3.4x1038 to
+3.4x1038

4 Unsigned 16-bit binary 0 to FFFFH 0 to 65535

5 Offset 16-bit binary 0 to FFFFH -32768 to +32767

6 2's complement 16-bit
binary

0 to FFFFH -32768 to +32767

7 Signed 16-bit binary 0 to FFFFH -32768 to +32767

8 Unsigned 12-bit binary 0 to FFFH 0 to 4095

9 Offset 12-bit binary 0 to FFFH -2048 to +2047

10 2's complement 12-bit
binary

0 to FFFH -2048 to +2047

11 Signed 12-bit binary 0 to FFFH -2048 to +2047

12 Unsigned 4-decade BCD 0 to 9999 (BCD) 0 to 9999

13 Offset 4-decade BCD 0 to 9999 (BCD) -5000 to +4999

14 10's complement 4-decade
BCD

0 to 9999 (BCD) -5000 to +4999

16 Unsigned 3-decade BCD 0 to 999 (BCD) 0 to 999

17 Offset 3-decade BCD 0 to 999 (BCD) -500 to +499

18 Offset 10's comp. 3-decade
BCD

0 to 999 (BCD) -500 to +499

42 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

In many of the non-IEEE data formats specified in the table above, the encoding
of the value in to the chosen format is not immediately apparent. The table below
explains the encoding of each format. The table shows the decimal value of the
binary, hexadecimal, or BCD content of the register, and for each range of values for
each data type, the formula for finding the ‘represented value’ is given.

DATA FMT RANGE OF
VALUES

(dec . equivalent)

FORMULA FOR REPRESENTED
VALUE

4 0 to 65535 RV = REG

5 0 to 65535 RV = REG - 32768

6 0 to +32767 RV = REG

32768 to 65535 RV = REG - 65536

7 0 to +32767 RV = - REG

32768 to 65535 RV = REG - 32768

8 0 to 4095 RV = REG

9 0 to 4095 RV = REG - 2048

10 0 to 2047 RV = REG

2048 to 4095 RV = REG - 4096

11 0 to 2047 RV = - REG

2048 to 4095 RV = REG - 2048

12 0 to 9999 RV = REG

13 0 to 9999 RV = REG - 5000

14 0 to 4999 RV = REG

5000 to 9999 RV = REG - 10000

16 0 to 999 RV = REG

17 0 to 999 RV = REG - 500

18 0 to 499 RV = REG

500 to 999 RV = REG - 1000

NOTES

1. The conventions used in the table are that ‘RV’ is the represented value and
 ‘REG’ is the decimal equivalent of the registers contents (which will actually be
 in hexadecimal or binary).

2. The encoding of some parameters in non-IEEE format require further
 manipulation to be expressed as ‘numerand and exponent’. See Appendix B.

3. The encoding of IEEE data is described in Appendix A.

8 .4 Tag field

HOLDING REGISTER LOCATION: 40017 - 40028

The TAG holding register will contain a blank ASCII string as a default, which may be
modified to a more suitable TAG by the master. Each TAG register will hold two ASCII
characters, giving a maximum of 24 characters stored.

43 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

8 .5 Number and type of transmitters

HOLDING REGISTER LOCATION: 40029

The holding register N_TY_MPX contains a binary value that is encoded to describe the
number and type of transmitters connected to the data highway of any given MTL838C
receiver. The information is encoded in to the binary value by a series of multiplications
and additions. The result is a binary value that uniquely describes the number and type
of receivers. The calculation of the value is shown below:

 N_TY_MPX = MPX1_TYPE

 + (8 x MPX2_TYPE)

 + (64 X MPX3_TYPE)

 + (512 x MPX4_TYPE)

 + (4096 x NUM_MPX)

where: ‘MPXn_TYPE’ defines the type of transmitter ‘n’, and:

 MPXn_TYPE = 3 for MTL831C (lower numbers for previous versions)

‘NUM_MPX’ defines the number of transmitters. Valid values are 1 or 2.

Currently, ‘n’ can only be 1 or 2 as we only support up to 2 transmitters on the Data
Highway.

8 .6 Units of temperature

HOLDING REGISTER LOCATION: 40030

The binary value stored in the UNIT register defines the units that are used for the
temperature readings made by the MTL831C multiplexer receiver for thermocouples,
RTDs and cold junctions. The value is stored as the binary equivalent of the decimal
values:

 1: degrees Centigrade (°C)

 2: degrees Fahrenheit (°F)

 3: Kelvin (K)

8 .7 Line frequency of power supply

HOLDING REGISTER LOCATION: 40031

The value that is placed in the holding register POWER identifies the frequency of the
local AC power supply. This is then used to establish the line frequency which should
be rejected. The frequency is identified by writing a the following decimal values in to
the register:

 0: 50Hz supply 1: 60Hz supply

44 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

8 .8 Input type and safety drive

HOLDING REGISTER LOCATION: 40033 - 40064

The holding registers INPTYSF_1 to INPTYSF_32 are used to store information
regarding the type of field input to the multiplexer transmitter and the safety drive
that is specified for each input. The actual contents of the register are binary
encoded values that uniquely describe the input type and safety drive selected for
each input.

 The input type selected can be one of a wide range of inputs. The value that is used
here is used in conjunction with the value calculated for N_TY_MPX, which defines
the number and type of transmitters connected to each MTL838C.

The safety drive comes in to action on detection of an open circuit sensor (if
open sensor detection is selected) or if a transmitter is found to have failed. The
appropriate OPEN_ALARM and/or transmitter failed STATUS bit will be set and the
input will be driven to its full scale or lowest value (depending on the selection of
safety drive). If HIGH_AL or LOW_AL are selected, these will also be triggered by
the safety drive.

If no safety drive is selected, if a transmitter fails, or an input becomes open circuit
the MTL838C will continue to supply the most up-to-date information it has received.
This then allows the host to read values that may differ widely from the actual
measured value in the field. It is the users responsibility to ensure that the data
read from the MTL838C is valid, either by the judicious use of safety drives (which is
recommended) and/or by continually monitoring that the unit and its inputs are giving
valid readings by way of the STATUS information.

By default, the upscale safety drive will be selected.

The value is calculated as follows: INPTYSF_n = IPTYPE_n + (256 x SAFETY_n)

‘IPTYPE_n’ is the type of input connected to input ‘n’, as shown in the table below:

IP TYPE_n MTL831C

0 mV voltage input (scalable)

1 E-type THC temp without CJ comp.

2 J-type THC temp without CJ comp.

3 K-type THC temp without CJ comp.

4 N-type THC temp without CJ comp.

5 R-type THC temp without CJ comp.

6 T-type THC temp without CJ comp

7 E-type THC temp with CJ comp.

8 J-type THC temp with CJ comp.

9 K-type THC temp with CJ comp.

10 N-type THC temp with CJ comp.

11 R-type THC temp with CJ comp.

12 T-type THC temp with CJ comp.

13 3-wire RTD Resistance

14 3-wire RTD PT100 Temperature

15 Not Used

16 S-type THC temp without CJ comp

17 S-type THC temp with CJ comp

 continued

45 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

IP TYPE_n MTL831C

18 E-type THC mV with CJ comp.

19 J-type THC mV with CJ comp.

20 K-type THC mV with CJ comp.

21 N-type THC mV with CJ comp.

22 R-type THC mV with CJ comp.

23 T-type THC mV with CJ comp.

24 S-type THC mV with CJ comp.

25 B-type THC mV with CJ comp.

26 B-type THC temp without CJ comp

27 B-type THC temp with CJ comp

28 4-wire RTD Resistance

29 2-wire RTD Resistance

30 4-wire PT100 RTD Temperature

31 2-wire PT100 RTD Temperature

32 C-type THC mV with CJ comp.

33 C-type THC temp without CJ comp

34 C-type THC temp with CJ comp

35 XK-type THC mV with CJ comp.

36 XK-type THC temp without CJ comp

37 XK-type THC temp with CJ comp

38 2-wire Cu50 RTD Temperature

39 3-wire Cu50 RTD Temperature

40 4-wire Cu50 RTD Temperature

41 2-wire Cu53 RTD Temperature

42 3-wire Cu53 RTD Temperature

43 4-wire Cu53 RTD Temperature

44 2-wire Ni100 RTD Temperature

45 3-wire Ni100 RTD Temperature

46 4-wire Ni100 RTD Temperature

‘SAFETY_n’ is the type of safety drive selected, as shown in the
following table:

SAFETY_n SAFETY SELECTION

0 no safety drive selected

1 upscale safety drive selected

2 downscale safety drive selected

46 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

The open sensor detection and the output value that will be given by the upscale
and downscale drives depend on the input type selected. The table below shows
the values that will be read on the outputs when driven upscale or downscale after
the detection of an open circuit input. These values will be reached if the full scale
values of the selected data format are sufficiently wide to include these values.

SENSOR TYPE DOWNSCALE LIMIT UPSCALE LIMIT

millivolt -120mV +120mV

thermocouple (mV) -120mV +120mV

resistance (ohms) 0 1200

Type E THC -300C 1200C

Type J THC -250C 1300C

Type K THC -300C 1400C

Type N THC -300C 1400C

Type R THC -100C 1800C

Type T THC -300C 500C

Type S THC -100C 1800C

Type B THC -50C 1900C

Type C THC -50C 2400C

Type XK THC -250C 900C

PT100 -250C 900C

Cu50 -250C 250C

Cu53 -100C 250C

Ni100 -100C 300C

8 .9 Input zero with offset - for scaling output measurements

HOLDING REGISTER LOCATION: 40065 - 40128

The two IPZERO_n registers for each input are used to hold the value of the input
zero after the offset has been applied. Each IPZERO_n will be found from:

IPZERO_n = input zero + offset, where:

input zero: is the lowest input value that may be recorded by the field input

offset: is the value included by the MTL838C to allow negative numbers to
 be represented by unsigned data formats.

Calculation of scaled output values is discussed in detail on page 51.

NOTE

As with many other database configuration parameters, the values stored in IPZERO

are of the data format selected by the user. When non-IEEE data is stored, the two

registers hold a ‘numerand’ and an ‘exponent’ of the required value. This allows the

selected data format to provide a broader range of values than would otherwise be

possible. The calculation of such values is discussed in Appendix B.

47 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

8 .10 Gain - for scaling output measurements

HOLDING REGISTER LOCATIONS: 40129 - 40192

The two GAIN_n registers are used to hold a value termed ‘gain’ for each of the n
inputs. This value is used in conjunction with the IPZERO, to give the required range
(or span) of measurements. Gain for each input is normally calculated as below:

GAIN = (Output FSD - Output zero) / (Input FSD - Input zero)

Calculation of scaled output values is discussed in detail on page 51.

NOTE

As with IPZERO_n, for non-IEEE data formats, the values for GAIN_n are stored as
‘numerand’ and ‘exponent’ according to the data format chosen. This is discussed

further in Appendix B.

8 .11 High alarm level

HOLDING REGISTER LOCATIONS: 40193 - 40256

The HA_n registers are used to store the level which should not be exceeded by the
scaled output value. If the scaled output does exceed this level, the appropriate bit
within the HIGH_ALARM input register will be set, and the 15th bit of the STATUS
register will also be set.

NOTE

For non-IEEE data, the value for HA_n will be stored as a ‘numerand’ and ‘exponent’.

See Appendix B.

8 .12 Low alarm level

The LA_n registers are used to store the level below which the scaled output value
should not go. If the scaled output does fall below this level, the appropriate bit
within the LOW_ALARM input register will be set, and the 16th bit of the STATUS
register will also be set.

NOTE

For non-IEEE data, the value for LA_n will be stored as a ‘numerand’ and ‘exponent’.

See Appendix B.

8 .13 Output zero offset

The value stored in the two OPZERO_n registers matches the lowest value of output
that is required from the nth output - corresponding to the lowest value of the nth input.

Calculation of scaled output values is discussed in detail on page 51.

NOTE

As with IPZERO_n, for non-IEEE data formats, the values for OPZERO_n are

stored as ‘numerand’ and ‘exponent’ according to the data format chosen. This is

discussed further in Appendix B.

48 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

9 MTL838C EXCEPTION RESPONSES

The following section describes the exception responses that may be given to each
type of query that may be received by the MTL838C.

Exception responses are only issued by Modbus slaves if a query that is received
correctly (i.e. passes the error and parity checks) cannot be carried out by the slave.
An exception response is constructed by returning the received function code to the
master with its MSB set to ‘1’, followed by an exception code, passed back to the
master as the first byte of the data field. See pages 7 and 25 for more detail.

9 .1 Following ‘READ COIL STATUS’ queries

EXCEPTION EXCEPTION RESPONSE

Address of first status to be read
is outside the range 0000 - 0005

Code 02
(Only coil addresses 0000 to 0005 contain

defined information)Number of locations to be read
is outside the range 1 - 5

9 .2 Following ‘READ INPUT STATUS’ queries

EXCEPTION EXCEPTION RESPONSE

Address of first location to be
read is outside the range
0000 - 1311

Code 02
(Only status flag addresses 0000 to 1311 for IEEE, 0000 to

0767 for non-IEEE contain defined information) Number of locations to be read
is outside the range 1 -512

Configuration database is not yet
confirmed

Code 04

9 .3 Following ‘READ HOLDING REGISTERS’ query

EXCEPTION EXCEPTION RESPONSE

Address of first register to be
read is outside the range
0000 - 0383

Code 02
(Only register addresses 0000 to 0383 contain

defined information)
Number of registers to be read
is outside the range 1 - 60

49 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

9 .4 Following ‘READ INPUT REGISTERS’ query

EXCEPTION EXCEPTION RESPONSE

Address of first register to be
read is outside the range
0000 - 0081

Code 02
(Only register addresses 0000 to 0081 contain

defined information) Number of registers to be read
is outside the range 1 - 60

Configuration database is not yet
confirmed

Code 04

9 .5 Following ‘FORCE SINGLE COIL’ queries

EXCEPTION EXCEPTION RESPONSE

Address of coil to be forced is
outside the range 0000 - 0005

Code 02
(only addresses 0000 to 0005 are defined)

Data value is neither FF00 hex
(‘1’) nor 0000 hex (‘0’)

Code 03

Coil that was to be forced is
‘write disabled’

Code 01

9 .6 Following ‘PRESET SINGLE REGISTER’ queries

EXCEPTION EXCEPTION RESPONSE

Address of register to preset is
outside the range 0000 - 0383

Code 02
(only addresses 0000 to 0383 are defined)

Data value is outside range
0 - 65535

Code 03

Register that was to preset is
‘write disabled’

Code 01

9 .7 Following ‘READ EXCEPTION STATUS’ queries

No exception responses can be generated by the MTL838C on correctly receiving a
READ EXCEPTION STATUS query.

9 .8 Following ‘DIAGNOSTICS’ queries

EXCEPTION EXCEPTION RESPONSE

Diagnostic code not supported
by the MTL838C

Code 03

50 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

9 .9 Following ‘PRESET MULTIPLE REGISTERS’ queries

EXCEPTION EXCEPTION RESPONSE

Address of first register to be
preset is outside the range
0000 - 0383

Code 02 (only addresses 0000 to 0383 are defined)
Number of registers to be preset
is outside the range 1 to 60

Number of data bytes is outside
the range 2 to 120

Register data values are outside
the range 0 to 65535

Code 03

Register that was to be forced is
‘write disabled’

Code 01

NOTE

Within the limits of the ‘address of register to be preset’ given above, it is possible

for the MTL838C to accept a query that requires an undefined register to be preset.

The MTL838C will accept the query and issue a confirming response, but it will not

modify any registers.

9 .10 Following queries not supported by the MTL838C

EXCEPTION EXCEPTION RESPONSE

Function code is not supported
by the MTL838C

Code 01

NOTE

The ‘broadcast’ function is not supported by the MTL838C. The unit does not

decode messages issued with the broadcast slave address ‘0’, so that it does not

subsequently issue an exception response.

51 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

10 SCALING

The inputs that are received by the MTL831C transmitter are processed by the
MTL838C according to the type of input, and depending on the scaling parameters that
have been selected by the user. The processing and scaling of input data is discussed
here in detail. In practice, most users have a standard data format and standard zero
and FSD values for their control system. This is easily accommodated using the PC
configuration software.

 The timing of responses to requests and the speed of response of the overall system
is also covered.

10 .1 Background to scaling input data

This section describes the fundamentals of scaling input data that will need to be
understood by those configuring the MTL838C via Modbus. If configuration via the
PC software is to be used, this section need not be understood in detail. The following
section on practical calculations will be of more relevance when using the PC software.

In general terms, each input to the MTL838C will have an output given by:

 output = gain x (input - input zero) + output zero

Where:

 output: is a digital value. This output value is shown on the PC screen
 as the “Reading” and is also available in the associated Modbus
 register.

 gain: is a value provides the required output range for the specified
 input range. This must be calculated by the user and written to
 the unit.

 input: is the value of the field input (mV, °C, etc.)

 input zero: is the lowest value that the input will be expected to record.

 output zero: is the output value that corresponds to the lowest input value.

52 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

NOTE

It is important to understand the limitations of the output range that is defined by the

data format that has been chosen. With IEEE format there is little need for concern

because of the enormous range that is available (> 1038) but with non-IEEE data

formats the output zero and FSD values should be chosen to give the maximum

resolution. As mentioned earlier, many users have site standards for zero and FSD

values that have been selected for optimum performance.

In practice, the previous equation must be modified. This is because the MTL838C
must be able to represent negative numbers when using unsigned data formats. This
means that the whole scale must be lifted, using an ‘offset’, to allow negative values
to be represented by a ‘positive’ value. Specifically then, the equation must be:

 output = GAIN_n x (input + offset - IPZERO_n) + OPZERO_n

Where:

 IPZERO_n = input zero + offset

All the parameters in upper case represent values written to the Holding Registers
for each input number ‘n’.

The level of offset varies according to the type of input selected:

INPUT TYPE DATA FORMAT OFFSET VALUE

All signed 0

CJ temperature (0.1) unsigned non-IEEE 40°C

mV unsigned 100mV

Temperature unsigned 500° (C, F, or K)

10 .2 Calculation of scaling parameters - in practice

Scaling parameters must be calculated for each input to the multiplexer system. This

can be done by first completing a table as shown below:

ZERO VALUES FULL SCALE
VALUES

RANGES GAIN
(GAIN_n)

Input zero Input FSD (input FSD) -
(input zero)

(output range)

53 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

OPZERO_n output FSD (output FSD) –
(OPZERO_n)

(input range)

The table gives parameters that need to be entered in to the PC software. Those
wishing to configure via Modbus, however, must follow the further working below.

The OPZERO_n and GAIN_n values are identical to the values written to the
MTL838C. However, the ‘input zero’ value will need to be modified as described in
the last section:

 IPZERO_n = input zero + offset

As an example, consider an application using a thermocouple to measure temperature
in the range -10°C to +40°C. The output data format will be unsigned 3 decade BCD,
with a (decimal) range of 100 to 600. These values can be put in the table and the gain
calculated:

54 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

ZERO VALUE FULL SCALE
VALUE

RANGE GAIN

-10°C +40°C +40°C – -10°C =
50°C 500 / 50 =10

100 600 600 - 100 = 500

The data format selected will require an offset of 500 C and based on this therefore,
the values written to the MTL838C would be:

 IP_ZERO : 490 (found from -10°C + 500°C = 490°C)

 OP_ZERO: 100

 GAIN: 10

As an example, the output can be calculated for an input of +40°C:

 output = GAIN x (input + offset - IPZERO) + OPZERO

 = 10 x (40 + 500 - 490) + 100 = 500 + 100 = 600

10 .3 Sensor Input Processing

The inputs to the transmitters are measured and processed in a number of different
ways according to the type of input selected and a number of other factors. The
processing of each input type is discussed in detail in the sections below:

10 .3 .1 Thermocouple inputs

The message received from the MTL831C is decoded to a mV measurement for
each thermocouple input. Each measurement is then corrected according to the
latest figures for calibration for that input.

If CJ compensation is selected, the mV measurement value is further corrected
according to the CJ temperature of the associated transmitter.

Linearization and conversion to a temperature reading is carried out by comparing the
corrected mV value with the linearization tables that are stored within the MTL838C.
The result is a temperature measurement expressed in Kelvin, degrees Fahrenheit,
or degrees Centigrade according to the units selected.

 The temperature value is converted to the required output according to the equation
below, and depending on the scaling parameters selected:

 output = GAIN_n x (temperature + offset - IPZERO_n) + OPZERO_n

The output is expressed in the required data format and is written to the input
registers for ‘INPUT_n’, from where it may be read by the Modbus host.

55 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

10 .3 .2 Resistance inputs

The message received from the MTL831C is decoded to a resistance measurement
for each resistance input. Each measurement is then corrected according to the
latest figures for calibration for that input.

 The resistance value for each input is converted to the required output according to
the equation below, and depending on the scaling parameters selected:

 output = GAIN_n x (m resistance + offset - IPZERO_n) + OPZERO_n

The output is expressed in the required data format and is written to the input
registers for ‘INPUT_n’, from where it may be read by the Modbus host.

10 .3 .3 RTD inputs

The message received from the MTL831C is decoded to a resistance measurement
for each RTD input. Each measurement is then corrected according to the latest
figures for calibration for that input.

 Linearization and conversion to a temperature reading is carried out by comparing
the corrected resistance value with the linearization tables that are stored within the
MTL838C. The result is a temperature measurement expressed in Kelvin, degrees
Fahrenheit, or degrees Centigrade according to the units selected.

 The temperature value is converted to the required output according to the equation
below, and depending on the scaling parameters selected:

 output = GAIN_n x (temperature + offset - IPZERO_n) + OPZERO_n

The output is expressed in the required data format and is written to the input
registers for ‘INPUT_n’, from where it may be read by the Modbus host.

10 .3 .4 mV inputs

The message received from the MTL831C is decoded to a mV measurement for
each resistance input. Each measurement is then corrected according to the latest
figures for calibration for that input.

The mV value for each input is converted to the required output according to the
equation below, and depending on the scaling parameters selected:

 output = GAIN_n x (mV input + offset - IPZERO_n) + OPZERO_n

The output is expressed in the required data format and is written to the input
registers for ‘INPUT_n’, from where it may be read by the Modbus host.

10 .3 .5 Data timing

The MTL838C typically receives updated measurement data from each MTL831C
every 500ms.

 The delay between receiving a Modbus request and issuing a response will be
approximately 3.5 character periods.

The overall response time is largely dependent on the choice of baud rate and
communication mode. The time taken to transmit each query and each response can
be easily calculated by multiplying the chosen baud rate by the number of bits that
are transmitted in each message.

56 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

11 APPENDIX A

11 .1 IEEE single precision data format

This appendix describes the encoding of IEEE single precision data. The table below
shows the composition of the four 8-bit bytes required to describe a value in IEEE
format. (Strictly, the data format is termed the IEEE754 single precision data format.)
The most significant byte is transmitted first.

ZERO VALUE ZERO VALUE

7 6 5 4 3 2 1 0

most significant byte s e7 e6 e5 e4 e3 e2 e1

2nd most significant byte e0 f22 f21 f20 f19 f18 f17 f16

3rd most significant byte f15 f14 f13 f12 f11 f10 f9 f8

least significant byte f7 f6 f5 f4 f3 f2 f1 f0

where:

 s = sign bit, e = exponent, f = significand

The value to be encoded is given by the relevant entry in the table below:

e f v

0 < e < 255 all v = (-1)s x 2 (e-127) x 1.f

e = 0 f ¹ 0 v = (-1)s x 2 (e-126) x 0.f

e = 0 f = 0 v = 0

e = 255 f = 0 v = (-1)s x infinity

e = 255 f ¹ 0 v = non-allowed number

For example:

 s = 0, e = 128, f = 5

 v = (-1)s x 2 (e-127) x 1.f

 = (-1)0 x 2 (128-127) x 1.5

 = 1 x 2 x 1.5

 = 3

57 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

12 APPENDIX B

12 .1 Non-IEEE data format

When non-IEEE data formats are used, some of the scaling parameter values used by
the MTL838C must be expressed as a numerand and an exponent. This gives much
greater flexibility to the values that may be used - especially when very large or very
small numbers are required. This issue need only be considered if the user intends to
configure the MTL838C via the Modbus host. If the PCS83 is used to configure the
unit there is no need to consider the encoding of data in this way, as both configuration
tools make these calculations automatically. The process becomes totally transparent
to the user.
The parameters that must be expressed as numerand and exponent are
GAIN_n, OPZERO_n, IPZERO_n, HA_n and LA_n.

12 .2 Numerand and exponent

The exact process for expressing a value as a numerand and exponent will vary with
the type of data format selected, but the overall principle behind the expression re-
mains the same irrespective of the data format selected.

The value must be expressed in the general form:
 V = n x 10e
where:
 V = the value to be expressed
 n = the ‘numerand’, with -1 < n < 1
 e = the ‘exponent’, with e < 6

Expressing ‘n’ and ‘e’ with non-IEEE data formats.

The equation for the calculation of ‘n’ and ‘e’ is modified slightly from that shown
above, by the introduction of another factor:
 V = (x / N) x 10e
where:
 x = an integer value expressed in the chosen data format
 N = the maximum value that can be expressed in the chosen data format
with:
 |x / N| < 1

The value of N varies with the chosen data format as shown in the table below:

DATA FORMAT EXPRESSION

 unsigned 16-bit binary V = (x / 65535) x 10e

 other 16-bit formats V = (x / 32768) x 10e

 unsigned 12-bit binary V = (x / 4095) x 10e

 other 12-bit formats V = (x / 2048) x 10e

 unsigned 4-decade BCD V = (x / 9999) x 10e

 other 4-decade BCD formats V = (x / 5000) x 10e

 unsigned 3-decade BCD V = (x / 999) x 10e

 other 3-decade BCD V = (x / 500) x 10e

Once the values of ‘x’ and ‘e’ have been calculated, they must be adjusted by the
offset for each data format given in the table of section 10.1.

58 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

The values of ‘x’ and ‘e’, after the offset has been applied, are written to the two
registers that contain the required scaling value. The upper register contains the
numerand and the lower register the exponent.

Example:

To represent -399.9 in offset 16-bit format. (Note that it would not be possible to
encode the value directly in the chosen data format, the closest value that the format
could represent is -400).

First ‘normalise’ the numerand to give a value of n < 1:

 V = n x 10e = -0.3999 x 103 = -399.9

For this data format, the value of ‘N’ is 32768, thus:

 V = (x / N) x 10e = x / 32768 x 103 = -13104/32768 x 103 = -399.9

Thus:

 x = -13104 and e = 3

In the offset 16-bit format, the figure to be written to the register is found from:

 RV = REG - 32768

thus:

 REGx = x + 32768 = -13104 + 32768 = 19664 REGe = e + 32768 = 3 +
 32768 = 32771

These two values REGx and REGe can then be written to the two registers for the
scaling parameter -399.9 with ‘Offset 16-bit’ data format selected. The value for REGx
is written to the upper of the two registers, REGe is written to the lower.

59 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

13 APPENDIX C

13 .1 Faultfinding on the MTL830C System

This section will focus on possible issues with Modbus communication. For other
system issues, please see the relevant manual below. Also, connecting to the
MTL838C using a USB cable, PC, and the PC software will allow validation of the
configuration in the unit as well as verification of operation and much diagnostic
information.

• INM838C MTL838C Installation Manual

• INM831C MTL831C Installation Manual

• INM838C-MBT MT838C Installation Manual

13 .1 .1 Host cannot communicate with the MTL838C

 • Verify that the RS485 wiring is correct (also check for proper line termi
 nation) – see INM838C. For the MTL838C-MBT verify the Ethernet
 wiring and that the unit has the correct IP address - see section 7 of the
 INM 838C PC Modbus manual.
 • Make sure the MTL838C is properly powered (POWER LED is ON)
 • Use the PC Software to verify the configured Modbus Address. For the
 RTU version (model MTL838C) verify that the Baud Rate and Parity are
 set correctly.
 • Make sure PC Software is NOT communicating with the MTL838C as
 this disables Modbus communication

13 .1 .2 Host cannot read Input Status Flags and Registers

 • The MTL838C will reject a request to read data if it has not received a
 confirmation from either the PC Software or the Modbus Host that the
 configuration is correct. In the PC Software this is called “Sign Off”.
 For Modbus it requires a write to the Coil Status Register
 CONFIRM (00004).

60 INM MTL838C - MBF Rev 3

DRAFT - 08 January 2019

THIS PAGE IS LEFT INTENTIONALLY BLANK

The given data is only intended as a product
description and should not be regarded as a legal
warranty of properties or guarantee. In the interest
of further technical developments, we reserve the
right to make design changes.

Eaton Electric Limited,
Great Marlings, Butterfield, Luton
Beds, LU2 8DL, UK.
Tel: + 44 (0)1582 723633 Fax: + 44 (0)1582 422283
E-mail: mtlenquiry@eaton.com
www.mtl-inst.com

© 2020 Eaton
All Rights Reserved

Publication No. INM MTL838C - MBF Rev 3 220920
September 2020

EUROPE (EMEA):

+44 (0)1582 723633
mtlenquiry@eaton.com

THE AMERICAS:

+1 800 835 7075
mtl-us-info@eaton.com

ASIA-PACIFIC:

+65 6645 9888
sales.mtlsing@eaton.com

AUSTRALIA
Eaton Electrical (Australia) Pty Ltd,
10 Kent Road, Mascot, New South Wales, 2020, Australia

Tel: +61 1300 308 374 Fax: +61 1300 308 463
E-mail: mtlsalesanz@eaton.com

BeNeLux
MTL Instruments BV
Ambacht 6, 5301 KW Zaltbommel
The Netherlands

Tel: +31 (0) 418 570290 Fax: +31 (0) 418 541044
E-mail: mtl.benelux@eaton.com

CHINA
Cooper Electric (Shanghai) Co. Ltd
955 Shengli Road, Heqing Industrial Park
Pudong New Area, Shanghai 201201

Tel: +86 21 2899 3817 Fax: +86 21 2899 3992
E-mail: mtl-cn@eaton.com

FRANCE
MTL Instruments sarl,
7 rue des Rosiéristes, 69410 Champagne au Mont d’Or
France

Tel: +33 (0)4 37 46 16 53 Fax: +33 (0)4 37 46 17 20
E-mail: mtlfrance@eaton.com

GERMANY
MTL Instruments GmbH,
Heinrich-Hertz-Str. 12, 50170 Kerpen, Germany

Tel: +49 (0)22 73 98 12 - 0 Fax: +49 (0)22 73 98 12 - 2 00
E-mail: csckerpen@eaton.com

INDIA
MTL India,
No.36, Nehru Street, Off Old Mahabalipuram Road
Sholinganallur, Chennai - 600 119, India

Tel: +91 (0) 44 24501660 /24501857 Fax: +91 (0) 44 24501463
E-mail: mtlindiasales@eaton.com

ITALY
MTL Italia srl,
Via San Bovio, 3, 20090 Segrate, Milano, Italy

Tel: +39 02 959501 Fax: +39 02 95950759
E-mail: chmninfo@eaton.com

JAPAN
Cooper Industries Japan K.K.
MT Building 3F, 2-7-5 Shiba Diamon, Minato-ku
Tokyo, Japan 102-0012

Tel: +81 (0)3 6430 3128 Fax:+81 (0)3 6430 3129
E-mail: mtl-jp@eaton.com

NORWAY
Norex AS
Fekjan 7c, Postboks 147,
N-1378 Nesbru, Norway

Tel: +47 66 77 43 80 Fax: +47 66 84 55 33
E-mail: info@norex.no

RUSSIA
Cooper Industries Russia LLC
Elektrozavodskaya Str 33
Building 4
Moscow 107076, Russia

Tel: +7 (495) 981 3770 Fax: +7 (495) 981 3771
E-mail: mtlrussia@eaton.com

SINGAPORE
Eaton Electric (Singapore) Pte Ltd
100G Pasir Panjang Road
Interlocal Centre
#07-08 Singapore 118523
#02-09 to #02-12 (Warehouse and Workshop)

Tel: +65 6 645 9888 ext 9864/9865
Fax: 65 6 645 9811
E-mail: sales.mtlsing@eaton.com

SOUTH KOREA
Cooper Crouse-Hinds Korea
7F. Parkland Building 237-11 Nonhyun-dong Gangnam-gu,
Seoul 135-546, South Korea.

Tel: +82 6380 4805 Fax: +82 6380 4839
E-mail: mtl-korea@eaton.com

UNITED ARAB EMIRATES
Cooper Industries/Eaton Corporation
Office 205/206, 2nd Floor SJ Towers, off. Old Airport Road,
Abu Dhabi, United Arab Emirates

Tel: +971 2 44 66 840 Fax: +971 2 44 66 841
E-mail: mtlgulf@eaton.com

UNITED KINGDOM
Eaton Electric Limited,
Great Marlings, Butterfield, Luton
Beds LU2 8DL

Tel: +44 (0)1582 723633 Fax: +44 (0)1582 422283
E-mail: mtlenquiry@eaton.com

AMERICAS
Cooper Crouse-Hinds MTL Inc.
3413 N. Sam Houston Parkway W.
Suite 200, Houston TX 77086, USA

Tel: +1 800-835-7075 Fax: +1 866-298-2468
E-mail: mtl-us-info@eaton.com

