

Warning

The 725B System described herein operates on a logic voltage of 24VDC and as standard 24VDC is used for the field contact supply voltage.

Internal or External power supplies using higher voltage AC/DC primary sources and optional high voltage field contact voltages may be present. If this is the case please ensure the necessary precautions are taken.

REV	DATED	DESCRIPTION	AUTHOR	APPROVED
0	31-08-06	First Issue	P.Cartmell	T. McLeman
1	16-10-07	Filter Part Numbers Corrected	P.Cartmell	D. Fishkin
2	30-11-07	Software Installation revised	P.Cartmell	D. Fishkin
3	07-03-08	AWR Cell added	P.Cartmell	D. Fishkin
4	03-04-08	Group Operations Functions Updated	P. Cartmell	D. Fishkin
5	16-04-08	Modbus with Time Stamping added	P. Cartmell	D. Fishkin
6	22-07-08	6 x Remote PB Inputs & Factory Links	P. Cartmell	D. Fishkin
7	20-08-08	Correction to ISA R Sequence	P. Cartmell	D. Fishkin
8	05-09-08	Sleep Mode Revision	P.Cartmell	D.Fishkin
9	09-12-08	Fuse details clarified	P.Cartmell	D.Fishkin
10	22-12-08	SOE Enable Clarified	P.Cartmell	D.Fishkin
11	09-01-09	Customer powered inputs clarified	P.Cartmell	D.Fishkin
12	13-05-09	Selection of AC Signal Inputs added	P.Cartmell	D.Fishkin
13	01-09-09	Standard Comm's details added	P.Cartmell	D.Adams
14	02-02-10	Enhanced Sleep Mode Features added	P.Cartmell	D.Adams
15	02-08-10	Added mapping & remote input select	D.Adams	P Cartmell
16	24-01-11	Removed configurator details	D.Adams	P. Cartmell
17	06-12-11	Added Additional functionality	D.Adams	P.Cartmell
18	12-01-12	Added Enhanced Comms Option	D.Adams	P.Cartmell
19	25-05-12	Added more detail on IEC61850	D.Adams	P.Cartmell

SECTION 1 - INTRODUCTION.....	6
General	6
Programmable Features	6
Glossary of Terms.....	7
Annunciator Model Code Definition	8
Product Overview.....	10
System Front View.....	10
Window Illumination	12
Window Colours	13
Adding or Changing Film Legends	13
Filter & Bezel Spare Parts Numbers	14
Laser Printed Legends.....	14
Window Numbering System.....	14
Integral Pushbutton Module	15
Watchdog Monitoring LED's	15
USB Programming port.....	16
CAL Mode	17
Signal Input Contact Status	17
Configuring Alarm Inputs for use with N/O or N/C field contacts.....	18
Remote Pushbutton Module	19
Audible Alarms	19
SECTION 2 – CELL TYPES	20
A Cell Detail	20
A Cell - Differential Input Version.....	21
AR Cell Detail.....	22
AR Cell - Differential Input Version	23
AP Cell Detail	24
APR Cell Detail	25
AP6 Cell Detail.....	26
AWR Cell Detail	27
AS Cell Detail	28
AS Cell - Differential Input Version	29
S Cell Detail	30
SS Cell Detail	31
WR Cell Detail.....	32
WRS Cell Detail	33
WRR Cell Detail	34
Optional WR Cell Detail	35
WRP Cell Detail	36
AC Cell Detail.....	37
APC Cell Detail	38
C Cell Detail	39
WRC Cell Detail	40
ACE Cell Detail	42
WRCE Cell Detail.....	43
CEC Cell Detail	44
PCE Cell Detail	45
USB Programming Port Location.....	46
SECTION 3 – LOGIC SUPPLY & FUSING.....	47
Externally Powered Systems	47
SI/O Card Versions	47
Systems using Internal Power Cards.....	48
SI/O Card Versions	48

SECTION 4 – POWER SUPPLY MONITORING	49
<i>Power Monitor Relays.....</i>	49
<i>Power Monitor LED's</i>	49
<i>Setting Inputs for use with 24VDC or 125VDC</i>	50
<i>Setting Inputs for use with 24VAC or 125VAC</i>	50
<i>Setting Inputs for use with 48VDC or 250VDC</i>	52
<i>Setting Inputs for use with 48VAC or 250VAC</i>	52
<i>Standard 24VDC Signal Input Wiring</i>	54
<i>Optional 24VDC Powered Input Wiring</i>	55
<i>Optional 24VAC Signal Input Wiring.....</i>	56
<i>Optional 125VDC Signal Input Wiring.....</i>	57
<i>Optional 125VAC Signal Input Wiring.....</i>	58
<i>Optional 48VDC Signal Input Wiring.....</i>	59
<i>Optional 48VAC Signal Input Wiring.....</i>	60
<i>Optional 250VDC Signal Input Wiring.....</i>	61
<i>Optional 250VAC Signal Input Wiring.....</i>	62
<i>Optional Differential Input Version Wiring.....</i>	63
SECTION 6 – COMMON RELAYS	64
<i>Group Relay.....</i>	65
<i>Group Relay with Reflash</i>	65
<i>Pushbutton Follower Relay.....</i>	65
<i>Diagnostic / Watchdog Relay.....</i>	66
<i>All Faults Monitoring</i>	66
<i>Field Contact Monitoring</i>	66
<i>System Fault Monitoring</i>	66
<i>Communication Failure Monitoring</i>	66
<i>Power Failure Monitoring</i>	66
<i>Card Fault Monitoring</i>	66
<i>Ground Fault Monitoring</i>	66
<i>LED Failure Monitoring</i>	66
<i>GPS Monitoring.....</i>	67
<i>Printer Fault Monitoring.....</i>	67
<i>Real Time Clock Fault Monitoring.....</i>	67
SECTION 7 – INDIVIDUAL CHANNEL REPEAT RELAYS	68
<i>Input Follower</i>	68
<i>Logic Follower.....</i>	68
<i>Display Follower.....</i>	68
<i>Cancel System Test Relay.....</i>	69
SECTION 8 - TYPICAL 725B REAR VIEWS.....	70
<i>Typical Large Window Version</i>	70
<i>Typical Medium Window Version.....</i>	71
<i>Typical Small Window Version</i>	72
SECTION 9 - INSTALLATION	73
<i>Unpacking</i>	73
<i>Mounting</i>	73
<i>Panel Mounting</i>	73
<i>Annunciator depth.....</i>	73
<i>19" Rack Mounting.....</i>	74
<i>Wall Mounting</i>	74
<i>Floor Standing.....</i>	74
SECTION 10- SPECIFICATIONS	75
<i>Environmental Specifications.....</i>	76
<i>Temperature</i>	76
<i>Radiated RFI Immunity</i>	77
<i>Conducted RFI Immunity</i>	77
<i>Radiated Emissions</i>	77

<i>Conducted Emissions</i>	77
<i>Radiated Power Frequency Magnetic Field</i>	77
<i>ESD Effects</i>	77
<i>Dielectric Withstand</i>	77
<i>Surge Withstand – Oscillatory</i>	77
<i>Electrical Fast Transient/Burst Immunity</i>	77
<i>Surge Immunity</i>	77
<i>Approvals</i>	77
SECTION 11 - SPARE PARTS LIST	78
<i>Four Channel Alarm Cards</i>	78
<i>24V / 125V Signal Input Versions</i>	78
<i>24V / 125V Differential Input Versions</i>	78
<i>48V / 250V Signal Input Versions</i>	78
<i>48V / 250V Differential Input Versions</i>	78
<i>Four Channel Repeat Relay Card</i>	78
<i>Common Relay Card</i>	78
<i>White LED Assembly</i>	79
<i>SI/O Card (For use with remote Pushbutton Module)</i>	79
<i>Ground Detector Card</i>	79
<i>Spare Coin Cell Battery</i>	80
<i>USB Programming Cable</i>	80
<i>Bezels</i>	80
<i>Clear Lens</i>	80
<i>Spares Kits (External Power Supply Version)</i>	80
<i>Spares Kits (Internal Power Supply Version)</i>	80
SECTION 12- SERVICING	81
<i>Module Removal</i>	81
<i>Card Address Setting</i>	82
<i>Small Window versions</i>	83
<i>Medium Window versions</i>	84
<i>Large Window versions</i>	85
<i>Typical Alarm Card DIL Switch SW1 Address Settings</i>	86
SECTION 13 – CONTACT / RETURNS	87
<i>Procedures for Factory Repair and Return Warranty</i>	87
<i>RMA FORM</i>	88
SECTION 14 – COMMUNICATIONS OPTIONS	89
<i>Entry Level Versions</i>	89
<i>Standard Comm's Version</i>	90
<i>Enhanced Comm's Version</i>	93
Protocols	94
<i>MODBUS</i>	94
<i>Modbus Slave – Entry Level</i>	96
<i>Modbus Slave – Standard Communications</i>	99
<i>Modbus Master – Standard Communications</i>	109
<i>RTK AMS</i>	111
<i>Wharton Format</i>	111
<i>Mapping</i>	112
<i>IEC61850 Server</i>	118
<i>SNTP Client</i>	120
SECTION 15– Standard Comm's Card Detail	121
<i>Real Time Clock</i>	122
SECTION 16 – Enhanced Comm's Card Details	123
<i>Real Time Clock</i>	123

SECTION 1 - INTRODUCTION

General

The RTK 725B Series alarm annunciator is used to inform the operator that a process has gone beyond set limits using visual and audible alarms.

The Annunciator is manufactured from universal cells which can be assembled in an array to provide the number of rows and columns required to suit individual panel designs. Each cell within the annunciator is able to contain either:- one large, two medium or four small alarm windows and the window is illuminated by “plug-in” universal white LED’s assemblies providing a maintenance free solution, a reduction in power consumption and lower heat dissipation.

Large, Medium & Small Window Sizes

Programmable Features

The 725B is equipped with a host of customer selectable features which can be accessed via a USB programming port located behind the pushbutton face plate. Once connected to a PC running the RTK supplied configuration software the user can enable or disable pre-defined functions as required. Selection of features is on a per channel basis with no special tools or programming knowledge required.

The Pushbutton assembly can be used to view the dynamic state of all signal inputs and to set the non alarm state of each alarm to normally open or normally closed as detailed in later sections.

Glossary of Terms

Cell: A single module 60mm x 60mm which can be joined to adjacent cells in varying heights and widths to provide the number of alarms required. The number of alarms available per Cell depends on the window size required.

N/C: A Normally Closed contact which opens in the abnormal state.

N/O: A Normally Open contact which closes in the abnormal state.

EN: Energised Relay Coil that De-Energises in the abnormal state.

DE-EN: De-Energised Relay Coil that Energises in the abnormal state.

Form A: Normally Open Single Pole, Single Throw Relay (SPST) contact that closes in the abnormal state.

Form B: Normally Closed Single Pole, Single Throw Relay (SPST) contact that Opens in the abnormal state.

Form C: Changeover contacts, Single Pole, Double Throw (SPDT) contact both poles change in the abnormal state.

FCV: Field Contact Voltage. (Wetting Voltage)

Card: Refers to individual electronic circuit boards. There are various types of Cards used within the 725B i.e. Alarm Cards, Relay Cards, Supply Cards and Communication Cards.

Annunciator Model Code Definition

Code Description

Model No

B Series 725B

Window Size

S Small – 30 mm w x 30mm h

M Medium – 60mm w x 30mm h

L Large – 60mm w x 60mm h

I Intermixed – combinations of the above as required

Cells Wide

1 – G 1 = 1 cell wide to 9 = 9 cells wide
 A = 10 cell wide to G = 16 cells wide

Cells High

1 – G 1 = 1 cell high to 9 = 9 cells high
 A = 10 cell high to G = 16 cells high

Pushbutton Module

X Not fitted

P Integral

R Remote TAR

Number Of Active Alarms

0 Hundreds

3 Tents

2 Units Example shown = 32 ways

Repeat Relay Facility

X Not fitted

R Single repeat relay per channel

D Dual repeat relay per channel

C Repeat relays powered by signal voltage

Integral Power Supply

X Not fitted

U Universal Input Power Supply – 85 to 264VAC OR 88 to 360VDC

S Universal Input Power Supply with SMR (Supply Monitor Relays)

D Redundant Universal Input Power Supplies - 85 to 264VAC OR 88 to 360VDC

M Dual Redundant with SMR(Supply Monitor Relays)

Signal Input Type

A 24v standard FCV

B 48v standard FCV

C 125v standard FCV

D 250v standard FCV

E 24v diff inputs FCV

F 48v diff inputs FCV

G 125v diff inputs FCV

H *250v diff inputs FCV*
I *Intermixed cards*

Tropicalisation Coating

X *Not Required*
C *Tropicalised*

Ground Detection

X *Not Fitted*
G *Internal Ground Detection card fitted*

Additional Remote Pushbutton Inputs (3 per card)

X *Not Fitted*
1 – A *1 = 3 x additional remote pushbutton Inputs fitted to*
9 = 27 x additional remote pushbutton Inputs fitted
A = 30 x additional remote pushbutton Inputs fitted to

Common Relay Cards (4 per card)

X *Not Fitted*
1 – 7 *1 = 4 x additional common relays fitted to*
7 = 28 x additional common relays fitted

Time Stamping

X *Not Fitted*
T *Time stamping of alarms enabled*

Synchronisation Card

X *Not Fitted*
S *Sync Card fitted for use with a remote GPS or IREG B Signal*

Communication Hardware

X *Not Fitted*
E *Entry Level – Addressing each alarm card individually*
S *Standard – RS485 and Ethernet (SNTP only)*
A *Enhanced – RS485, Ethernet, Additional Ethernet Port*

Protocol Options

X *Not Fitted*
1 *RTK AMS (Entry Level), Serial Modbus and AMS(Standard)*
2 *Serial Modbus RTU (Entry Level)*
3 *DNP3 Unarmed (Enhanced)*
4 *IEC61850 Unarmed (Enhanced)*
5 *IEC61850 (Enhanced)*

Special Options

X *Not Fitted*
1 – Z *Reserved for Special Options*

Product Overview

The 725B is a modular alarm annunciationator constructed from 60mm x 60mm cells to form a single unit suitable for mounting in a panel cut-out. This modular design allows units to be constructed in vast range of heights and widths to suit individual panel designs and allows systems to be supplied from a single alarm to a maximum of 256 alarms per annunciation.

System Front View

Typical Small Window Version

Typical Medium Window Version

Typical Large Window Version

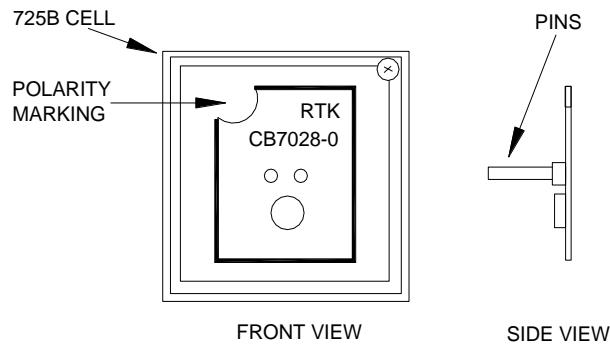
Number Of Alarms Per Cell

Each 60mm x 60mm cell within the annunciator can contain 1, 2 or 4 alarms depending on the required window size:-

Window Style	Window Size (W x H)	Alarms per Cell
Large	60mm x 60mm	1
Medium	60mm x 30mm	2
Small	30mm x 30mm	4

If requested at the time of order the unit can be supplied with intermixed window sizes in any combination

Integral Pushbutton Location


When viewing the front of the annunciator the bottom right hand corner is normally reserved for the integral pushbutton module.

If advised at the time of order the following alternatives are available

1. The integral pushbutton module can be placed in any cell within the annunciator.
2. The integral pushbutton module can be replaced with active alarm channels and remote pushbuttons can be used to control the alarm annunciator.
3. The Pushbutton assembly can be supplied as a remote assembly which can be interconnected with the annunciator via a factory supplied ribbon cable

Window Illumination

Each channel is illuminated by white “Plug-In” LED’s which offer a maintenance free solution, lower heat dissipation and lower power consumption. Each LED assembly is equipped with 2 pins that allows it be “plugged” into the 2 pin socket in the cell behind each alarm window.

Please note the CB7028POP1 white LED assembly is factory fitted with the half circle in the top left hand corner as shown above.

If the LED assembly is inserted while power is applied to the system the LED may blink when it is first inserted but will automatically return to the off state if no alarm is present.

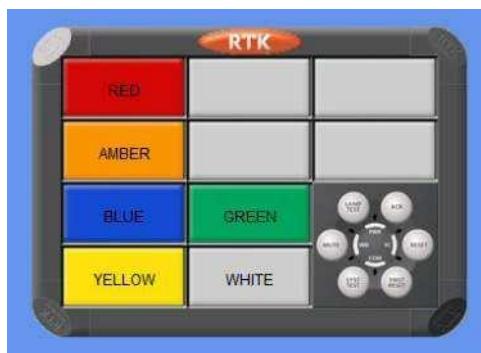
If it is inserted upside down, no damage will occur but the LED will not function.

To remove the LED assembly a pair of pin-nosed pliers can be used on the sides of the circuit board to gently pull the assembly towards you.

The number of LED’s required per window is governed by the window size.

- Small window versions use a single LED assembly
- Medium window versions use two LED assemblies
- Large window versions use four LED assemblies

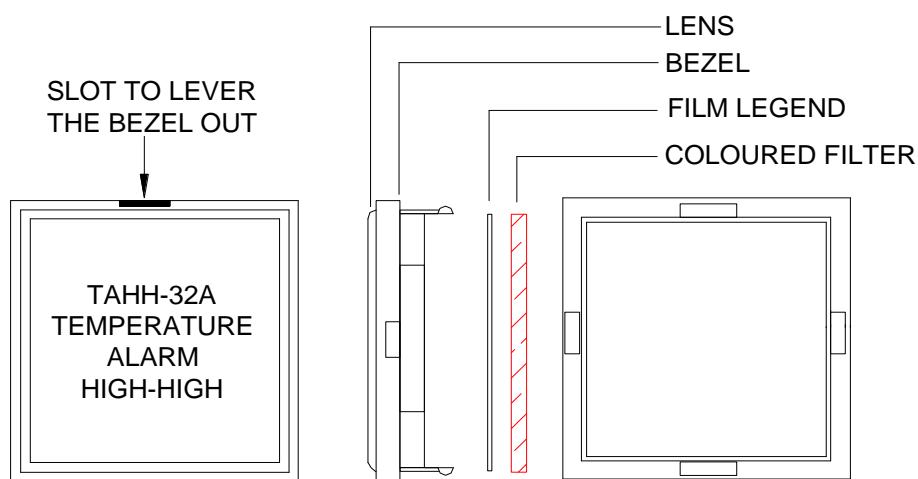
LED Failure Indication


The 725B is equipped with LED monitoring to provide indication of total loss of indication to a channel using the Watchdog, WD, LED mounted on the face of the Pushbutton Module or the software diagnostic facility as described later in the manual. As an option a common relay can be used to provide remote indication of LED failure if required.

Window Colours

Each channel is equipped with its own removable lens assembly, which, contains a coloured filter and a laser printed film legend.

White filters are used in standard applications but coloured filters can be used as an alternative to provide a clear indication of alarm type.


For example Red can be used for trip alarms, amber for pre-alarms and green for status. A choice of Six colours are available:- White, Red, Amber, Yellow, Green or Blue.

Adding or Changing Film Legends

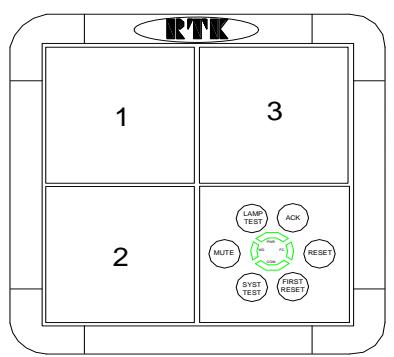
Each lens assembly has a small slot in the upper ridge of the surround bezel, which allows a flat blade terminal screwdriver to be used to gently lever the assembly from the annunciator.

Once the assembly has been removed the lens, coloured filter and film legend can be accessed by gently pushing outwards on the side of the inside face of the bezel to allow the lens to clear the associated moulding tabs.

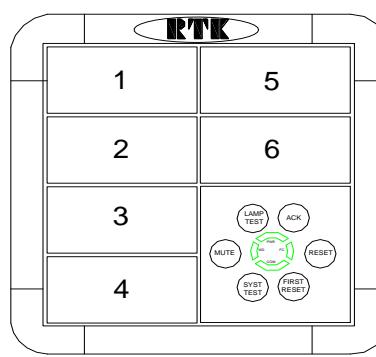
Filter & Bezel Spare Parts Numbers

Part	Small Window	Medium Window	Large Window
Bezel	ML-7227-S	ML-7227-M	ML-7227-L
Clear Lens	ML-7228-S	ML-7228-M	ML-7228-L
Red filter	ML-7229-S-RD	ML-7229-M-RD	ML-7229-L-RD
Amber filter	ML-7229-S-AM	ML-7229-M-AM	ML-7229-L-AM
Yellow filter	ML-7229-S-YW	ML-7229-M-YW	ML-7229-L-YW
Blue filter	ML-7229-S-BL	ML-7229-M-BL	ML-7229-L-BL
Green filter	ML-7229-S-GN	ML-7229-M-GN	ML-7229-L-GN

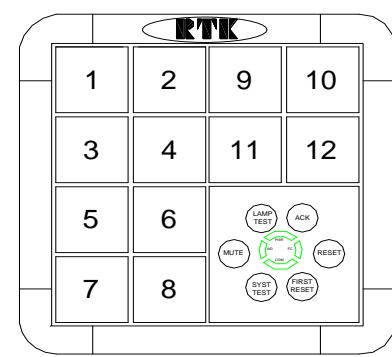
Laser Printed Legends


Film legends can be easily created in a style, size, font and language using Microsoft Excel or the RTK supplied configuration software.

Once the legend details have been entered they can be laser printed onto overhead transparency film and placed between the clear front lens of the window assembly and the associated coloured filter as shown above.


Window Numbering System

RTK have adopted the following window numbering system to aid with the location of the film legend and the associated alarm cards.


This method is used to ensure that the legend matches the functions selected for the designated alarm.

Large Window Version

Medium Window Version

Small Window Version

Integral Pushbutton Module

On standard systems the pushbutton / programming module is located in the bottom right hand corner of the annunciator when viewed from the front.

If advised at time of order the pushbutton module can be located in any alternative cell within the annunciator.

Pushbuttons

Six Pushbuttons:- Lamp Test, Systems Test, Mute, Ack, Reset and First Reset, are available to allow the user to control any of the customer selectable ISA sequences.

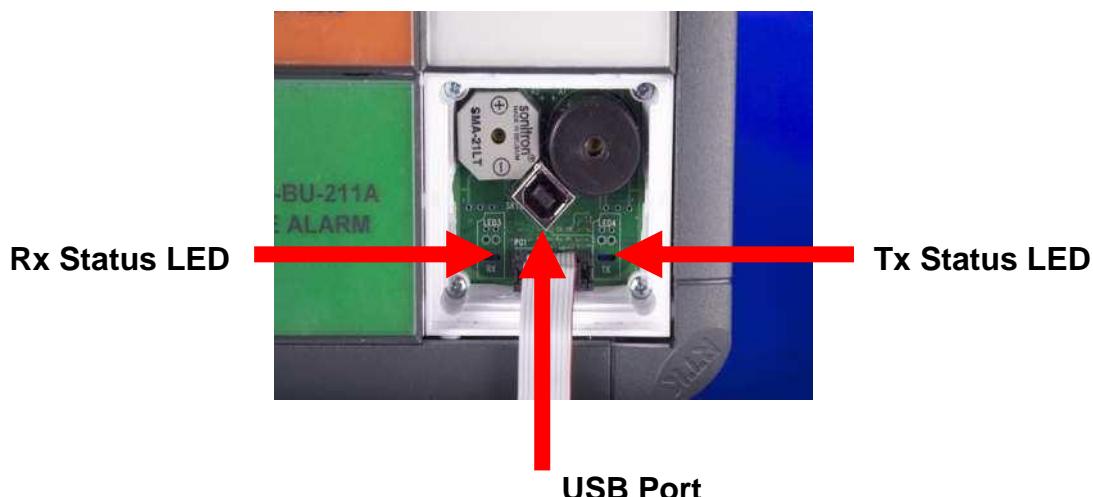
Some users prefer to lock out specific pushbutton functions and any of the integral pushbuttons can be disabled in software.

A typical example is first reset where the user prefers to use a remote key switch to reset the first up indication in place of the integral pushbutton.

Watchdog Monitoring LED's

As alarm annunciators are used in safety critical applications it is important that the functions of the annunciator are also monitored and the 725B is equipped with an extensive self diagnostic facility and four green status LED bars are used to provide dynamic monitoring of logic power, field contact supply, watchdog and communications states.

The LED's indicate

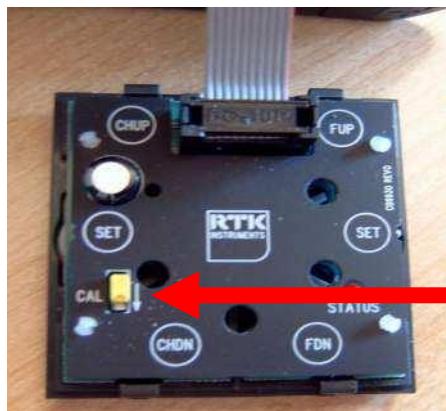

1. PWR = 24VDC logic power to individual cards
2. FC = Field contact power & contact loop resistance monitoring
3. COM = Communications
4. WD = Watchdog monitoring of individual cards

When power is initially applied to the unit the four green LED bars illuminate in a rotational sequence whilst the system verifies that all of the expected cards are present and once the start up routine is complete the LED's stay ON if all functions are fully operational.

USB Programming port

A small flat blade screwdriver can be used to gently ease the top edge of the pushbutton face plate out which allows access the USB programming port which can be used to:-

1. Upload a configuration from an existing 725B
2. Download a configuration to the 725B
3. View diagnostic data whilst fault finding.


Once the user connects the supplied cable between a PC and the USB programming port the four green LED bars on the front of the pushbutton module will flash in unison to indicate that the port is being used.

Tx and Rx Status LED's are provided to indicate any communication activity between the 725B and host PC.

Full details of programming are provided in later sections of this manual.

CAL Mode

The 725B unit can be placed into CAL mode which allows the user to view the dynamic status of the associated plant inputs or the user can use the pushbutton module to set the non alarm state of each alarm (N/O or N/C).

To place the unit into CAL mode the CAL switch needs to be pushed down in the direction of the arrow as indicated above.

Whilst in CAL mode the PWR / COM LED bars flash followed by the WD / FC LED bars and this sequence cycles until the cal switch is turned off.

Please note whilst in CAL mode the pushbuttons have alternative functions and the CAL switch must be in the OFF mode for the normal pushbutton functions to operate correctly.

If an alarm occurs whilst in CAL mode the audible will sound and once the user places the switch back to normal the alarm will be displayed in the normal way.

Signal Input Contact Status

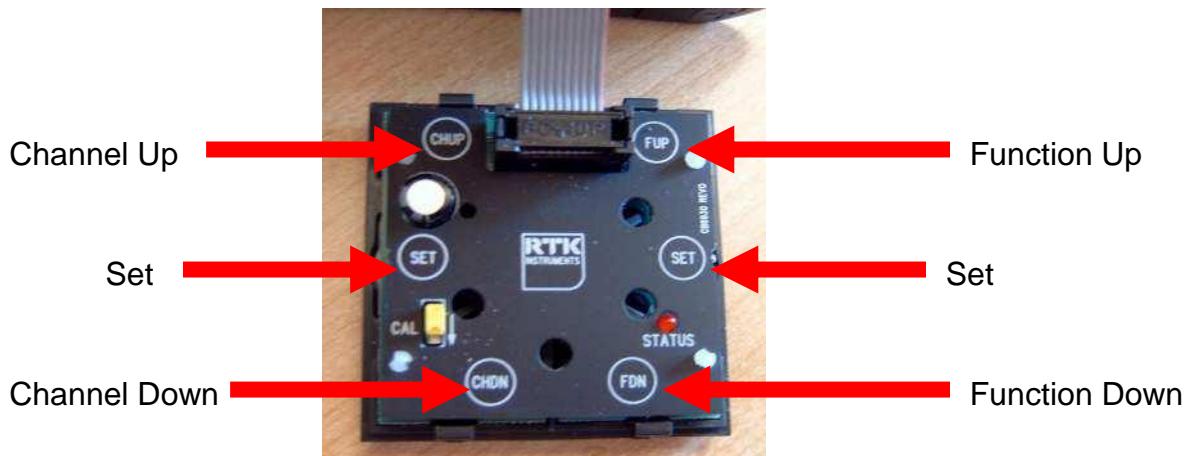
During commissioning or fault finding the user can easily determine the current status of all of the plant inputs connected to the alarm annunciator by placing the unit into CAL mode.

Once in this mode **each** window on the 725B indicates the dynamic status of the associated plant input.

- If the alarm window is OFF the associated plant input is OPEN
- If the alarm window is ON the associated plant input is CLOSED

Please note: The OPEN and CLOSED indication refers to the customer's field contact and is not related to the non alarm state set in the annunciator. (N/O or N/C)

Configuring Alarm Inputs for use with N/O or N/C field contacts


The non alarm state of each alarm channel can be configured in software to allow the channel to operate from either a N/O or N/C contact as described later in this manual.

As an alternative the integral pushbutton module can be used to set this function by sliding the CAL switch down to the ON position.

When in CAL mode the function of the integral pushbuttons changes to allow the user to navigate between channels, select the function and set the function as detailed below.

Pushbutton	Abbreviation	Function in CAL Mode
Lamp Test	CHDN	Channel Down
Ack	FDN	Function Down
Mute	SET	Set
Reset	SET	Set
System Test	CHUP	Channel Up
First Reset	FUP	Function Up

The alternative function of each pushbutton is indicated on the inside face of the pushbutton assembly but it is the pushbutton on the front of the assembly that is used to physically activate the function.

Function Up / Down

The integral pushbutton module has two functions.

1. It can be used to dynamically view the status of all signal inputs to determine which inputs are open or closed.
2. It can be used to set the non alarm state of each alarm channel to N/O or N/C.

When the unit is first switched to CAL mode it defaults to the contact monitoring state. If the user wishes to change the non alarm contact state of any inputs the Function Up (First Reset Pushbutton) must be pressed.

Once the Function Up has been selected the top left hand window flashes to indicate that the 1st channel is in programming mode and the user can set or navigate to each channel as required.

Channel Up / Down

The user is able to navigate to the required channel by pressing the System Test (channel up) to navigate to channel 1 to 2 to 3 etc and Lamp Test Pushbutton (channel down) to navigate from channel 3 to 2 to 1 etc.

Setting the Non Alarm Input State

Once the user has navigated to the required channel each time the Mute, or Reset, pushbutton is pressed the input state is inverted from N/O to N/C.

- If the status LED is OFF the channel is suitable for use with N/O contacts.
- If the status LED is ON the channel is suitable for use with N/C contacts.

CAUTION:- This information is only saved when the user navigates to another channel (up or down). If the user places the CAL switch to the OFF position without navigating to an adjacent channel the information will not be stored.

Remote Pushbutton Module

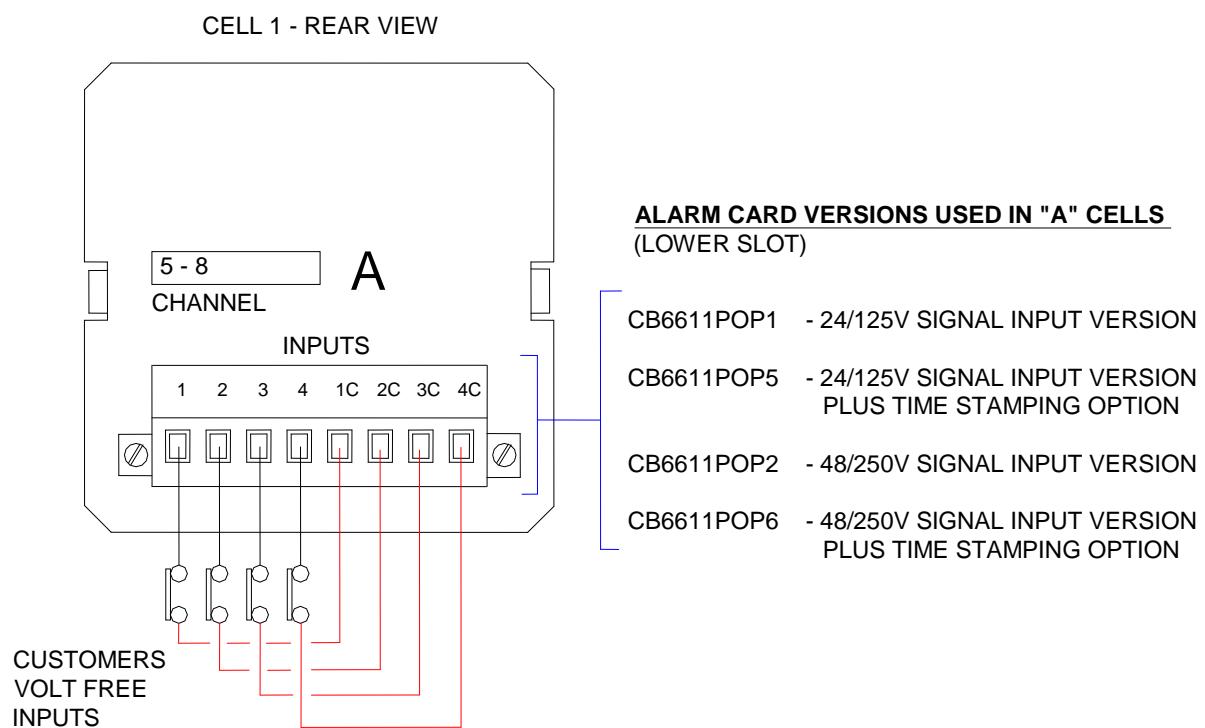
As an alternative the 725B can be fully equipped with alarm windows and the Pushbutton Module can be supplied as a remote item or the user can use conventional panel mounting momentary, N/O, pushbuttons to control the annunciation.

In these applications the common watchdog / relay, WR, card part no CB6641POP2 is equipped with a USB programming port which is located on the underside of the associated cell. Full details are provided in section 2 of this manual

Audible Alarms

Two internal audible alarms are provided as standard behind the pushbutton module for use as critical and non critical audibles.

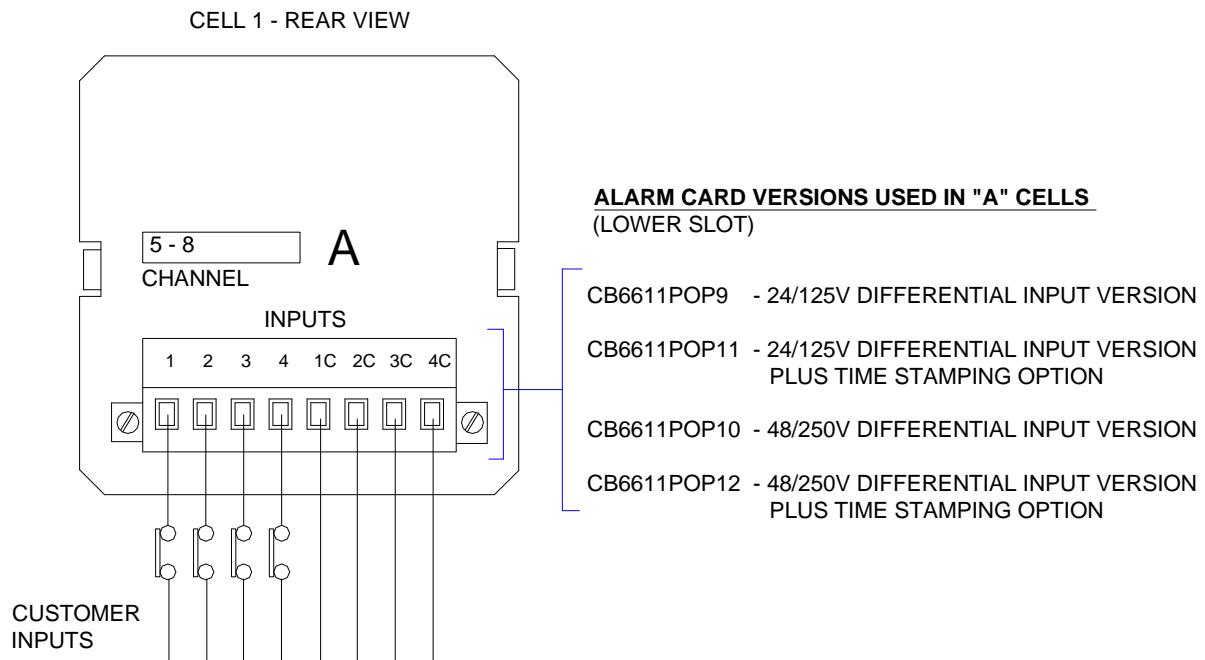
As standard the audibles provide a steady tone but each horn can be software selected to pulse if required. The volume of each horn is selectable in software from 0 to 100% of span and a test volume feature is provided as described later in the manual. Please note if the pulse option has been selected the software “test volume” function overrides the pulse feature to make adjustment simpler.


Each channel can be set in software to activate either of the integral horns.

SECTION 2 – CELL TYPES

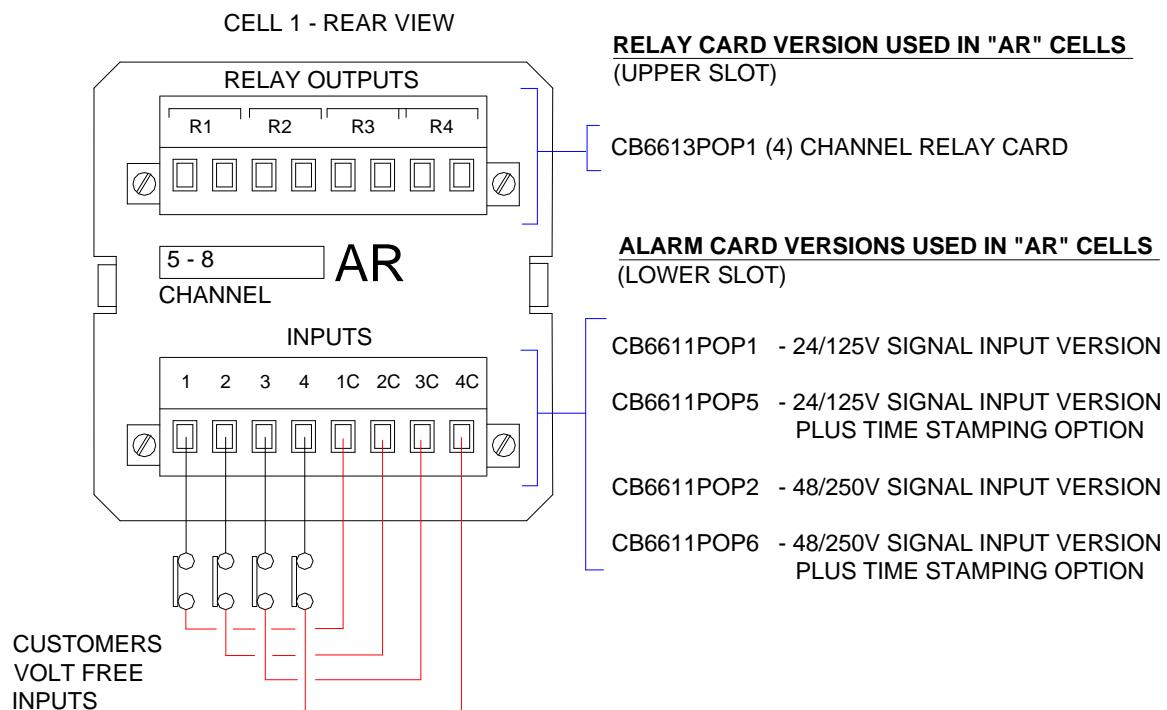
Each 725B alarm annunciator is constructed from modular building blocks, "CELLS". The type of card installed within each cell is dependent on the options required.

The following pages detail the individual cell types, available options and each annunciator can be manufactured using combinations of cells and types to suit individual panel designs.


A Cell Detail (Alarm Cell)

Cell type A is used to provide:-

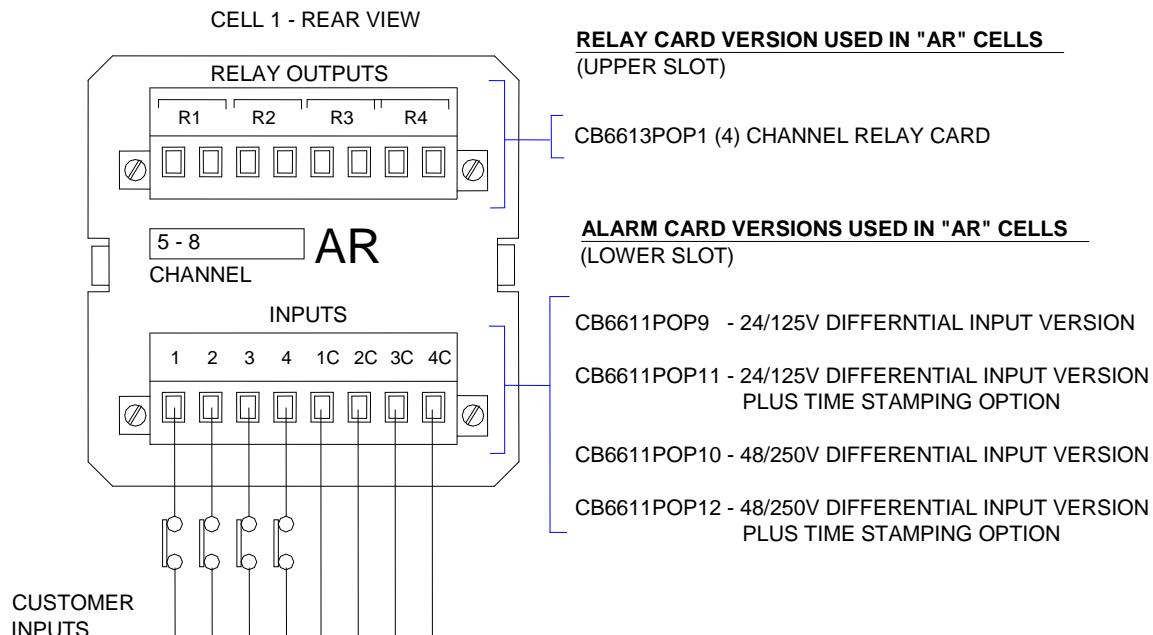
- Four digital inputs for use with volt-free or powered contacts
- The drawing above indicates the standard card types available for cell type A


A Cell - Differential Input Version

Cell type **A** is used to provide:-

- Four isolated digital inputs for use with volt-free or powered contacts
- The drawing above indicates the OPTIONAL differential input version where each channel is provided with a fully isolated bi-polar input.

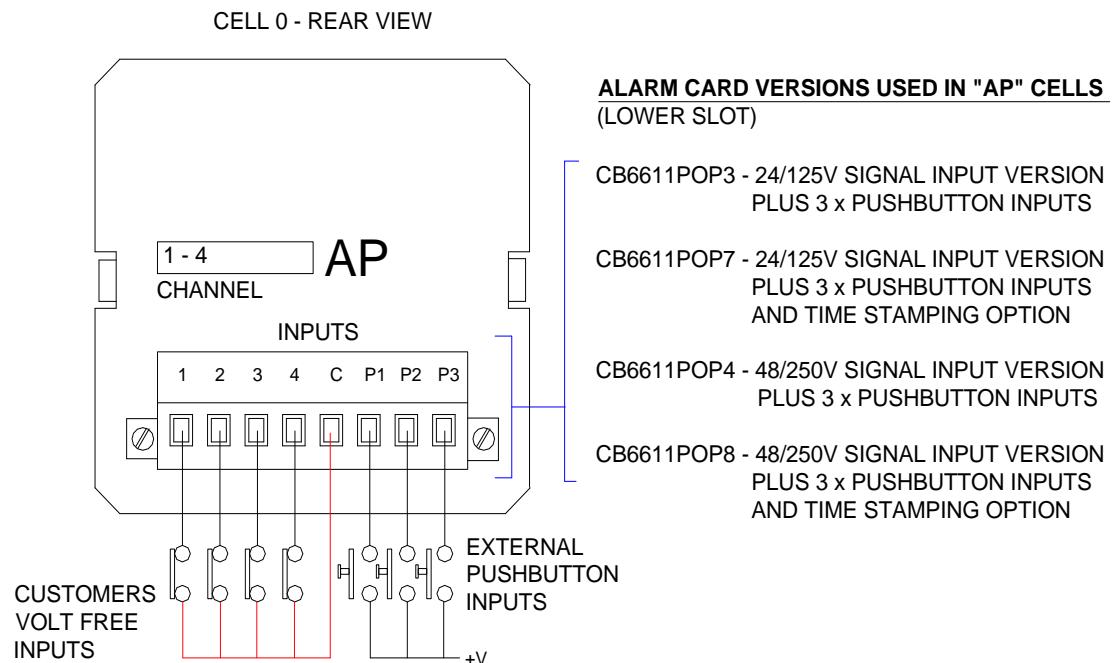
AR Cell Detail (Alarm – Relay Cell)



Cell type **AR** is used to provide:-

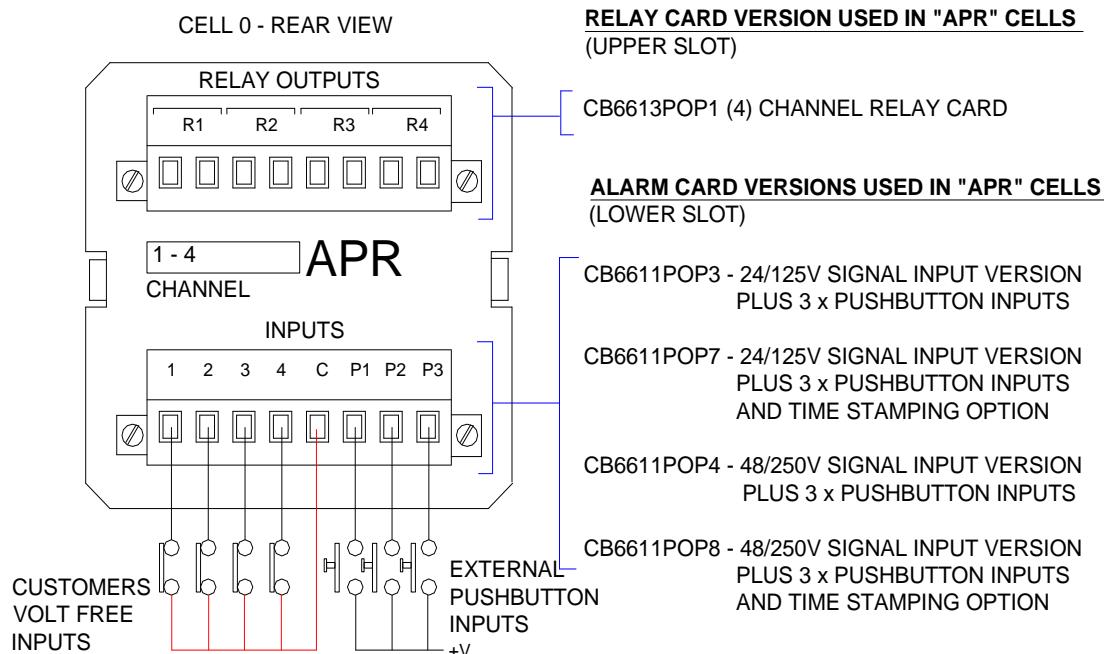
- Four digital inputs for use with volt-free or powered contacts
- Four repeat relays providing volt-free contact outputs for use with third party devices
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The coil state can be programmed to be either EN or DE-EN per relay

The drawing above indicates the standard card types available for cell type AR


AR Cell - Differential Input Version

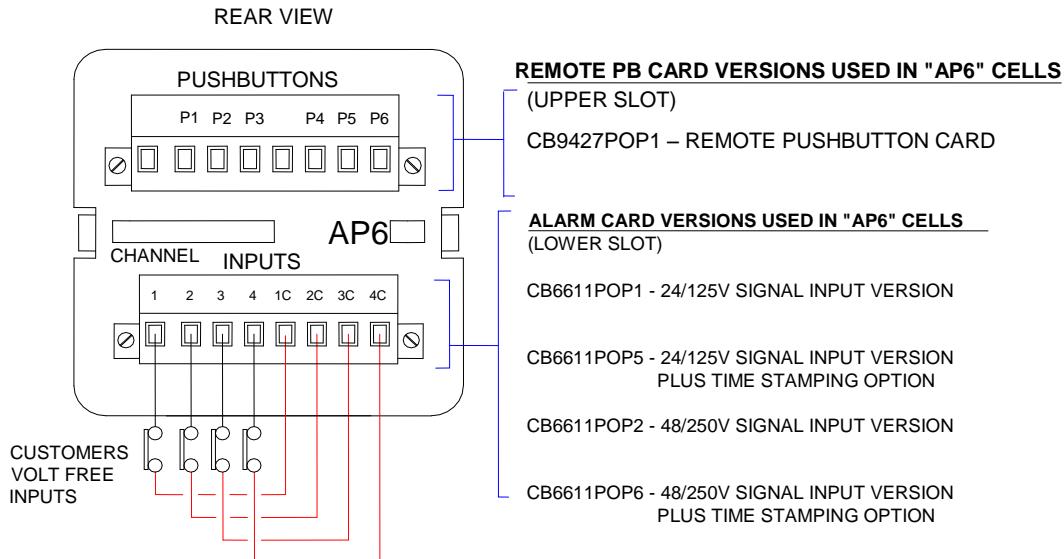
Cell type **AR** is used to provide:-

- Four isolated digital inputs for use with volt-free or powered contacts
- Four repeat relays providing volt-free contact outputs for use with third party devices
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The coil state can be programmed to be either EN or DE-EN per relay
- The drawing above indicates the OPTIONAL differential input version where each channel is provided with a fully isolated bi-polar input.


AP Cell Detail (Alarm – Pushbutton Cell)

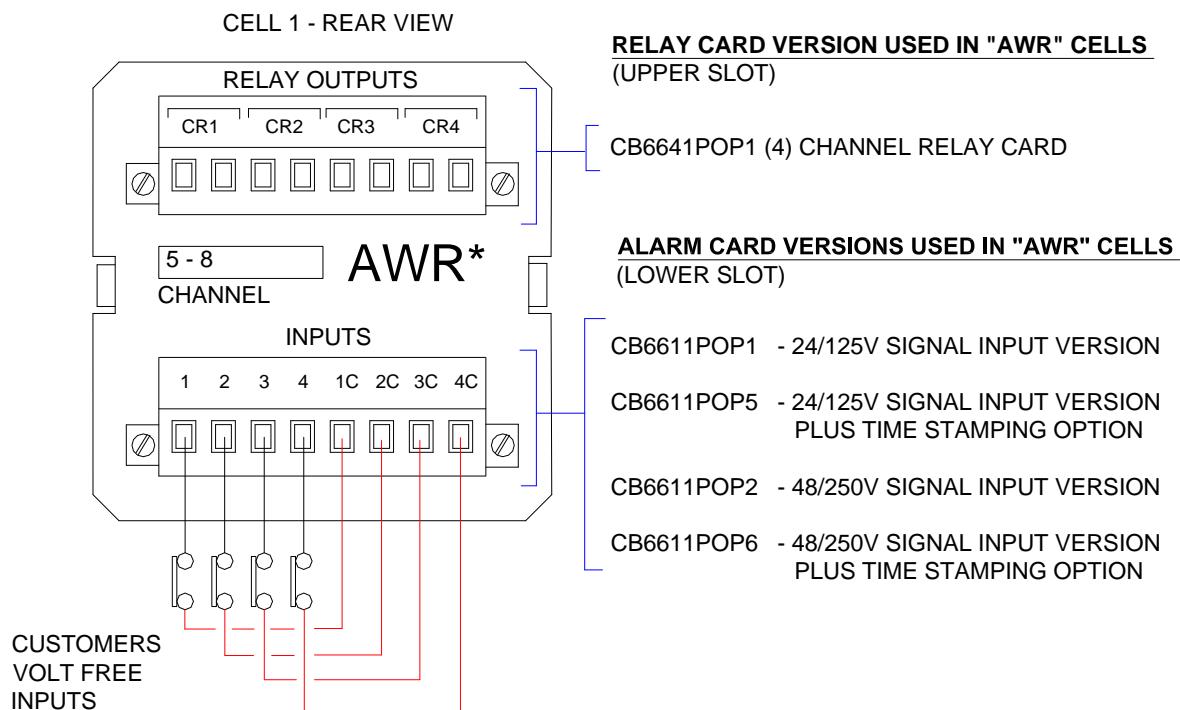
Cell type **AP** is used to provide:-

- Four digital inputs for use with volt-free or powered contacts
- Three external pushbutton inputs for use with optional remote mounting pushbuttons as required.
- Each of the external pushbutton inputs can be programmed to operate as either:- Lamp Test, Silence, Acknowledge, Reset, 1st Reset or System Test or Sleep Mode as required. The common return for all remote pushbuttons is +V (+24VDC)
- The drawing above indicates the standard card types available for cell type AP.
- Multiple AP cells may be used in applications that require more than 3 x pushbutton inputs or in systems using multiple pushbutton groups to control selective channels


APR Cell Detail (Alarm / Pushbutton – Relay Cell)

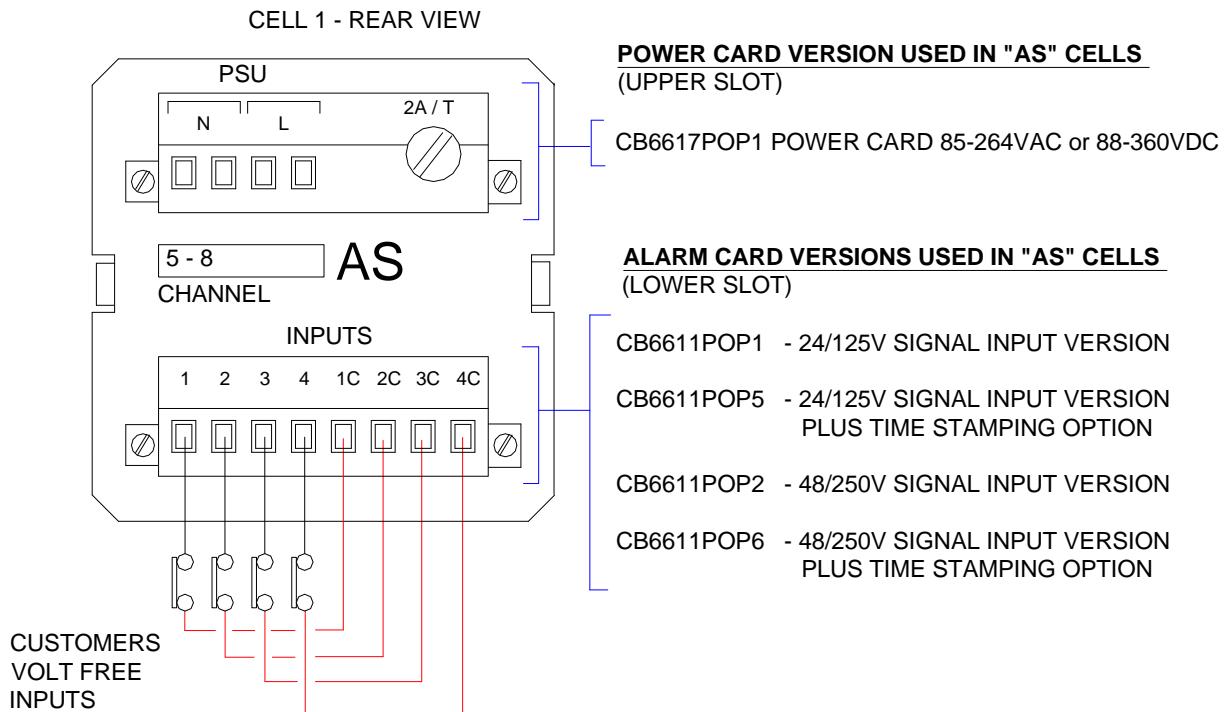
Cell type **APR** is used to provide:-

- Four digital inputs for use with volt-free or powered contacts
- Three external pushbutton inputs for use with optional remote mounting pushbuttons as required.
- Each of the external pushbutton inputs can be programmed to operate as either:- Lamp Test, Silence, Acknowledge, Reset, 1st Reset or System Test or Sleep Mode as required. The common return for all remote pushbuttons is +V (+24VDC)
- Four repeat relays providing volt-free contact outputs for use with third party devices
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The coil state can be programmed to be either EN or DE-EN per relay
- The drawing above indicates the standard card types available for cell type APR.
- Multiple APR cells may be used in applications that require more than 3 x pushbutton inputs or in systems using multiple pushbutton groups to control selective channels.


AP6 Cell Detail (Alarm Card - Remote Pushbutton)

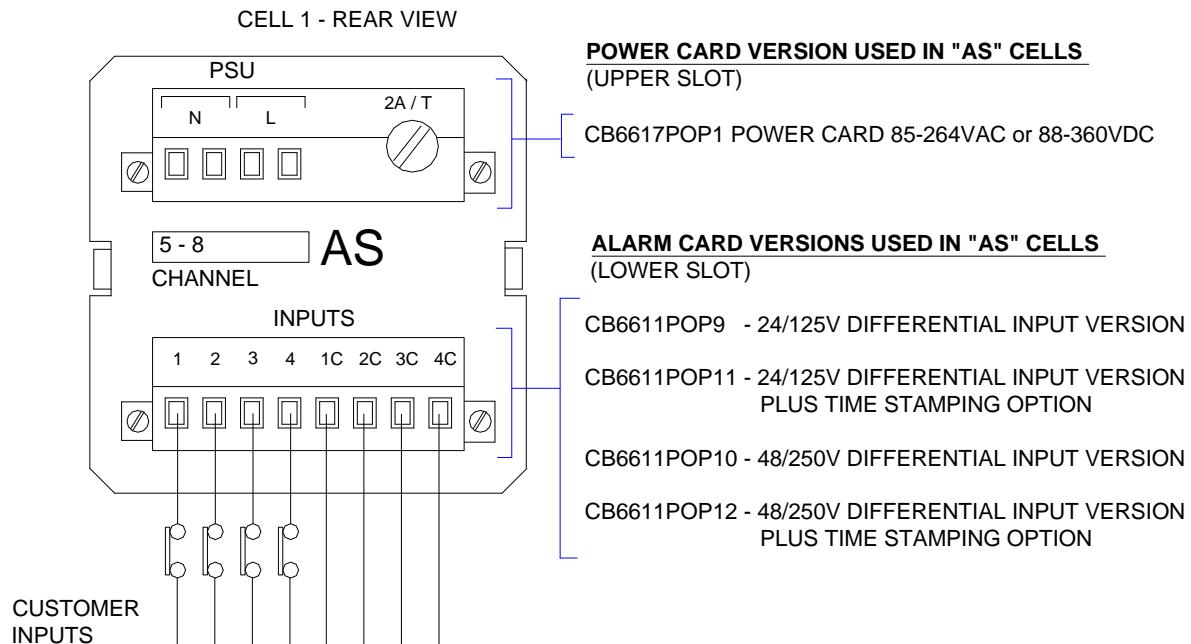
Cell type **AP6** is used to provide:-

- Four digital inputs for use with volt-free or powered contacts
- Six external pushbutton inputs for use with optional remote mounting pushbuttons as required.
- Each of the external pushbutton inputs can be programmed to operate as either:- Lamp Test, Silence, Acknowledge, Reset, 1st Reset or System Test or Sleep Mode as required. The common return for all remote pushbuttons is +V (+24VDC)
- The drawing above indicates the standard card types available for cell type AP6.
- Multiple AP6 cells may be used in applications that require more than 6 x pushbutton inputs or in systems using multiple pushbutton groups to control selective channels


AWR Cell Detail (Alarm – Watchdog Relay Cell)

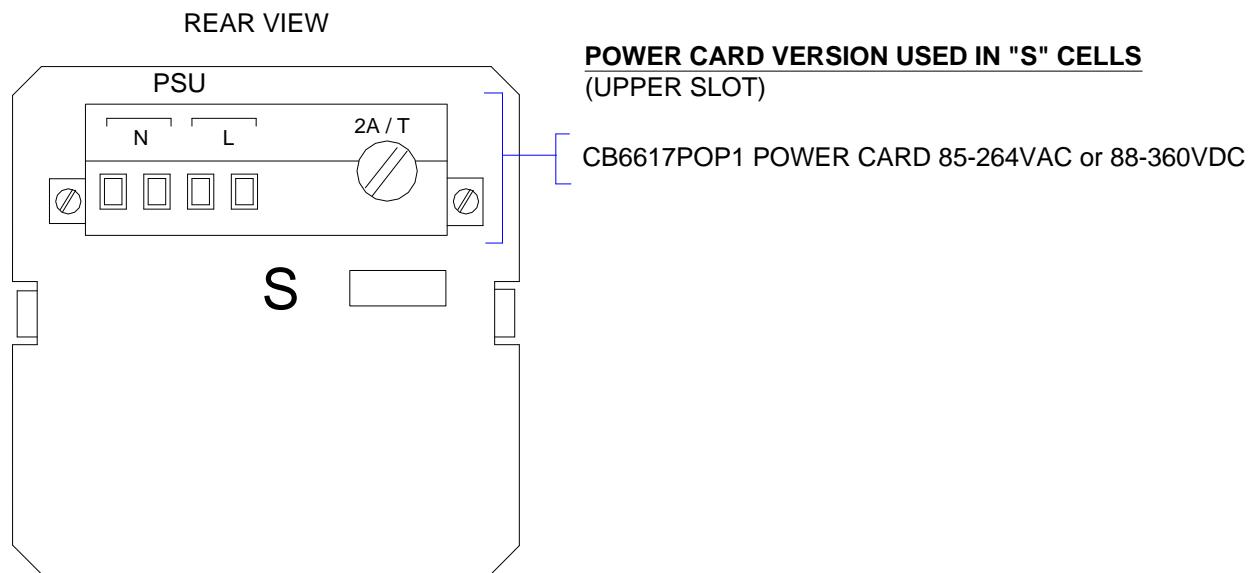
Cell type **AWR*** is used to provide:-

- Four digital inputs for use with volt-free or powered contacts
- Four Common Relays which can be programmed for use as horn, common alarm or diagnostic watchdog relays
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The non alarm coil state of each relay can be programmed to be either EN or DE-EN
- * = AWR Card i.e. AWR1, AWR2, etc the suffix number is used in systems using multiple AWR Cells to aid programming / wiring.


The drawing above indicates the standard card types available for cell type AWR

AS Cell Detail (Alarm – Supply Cell)

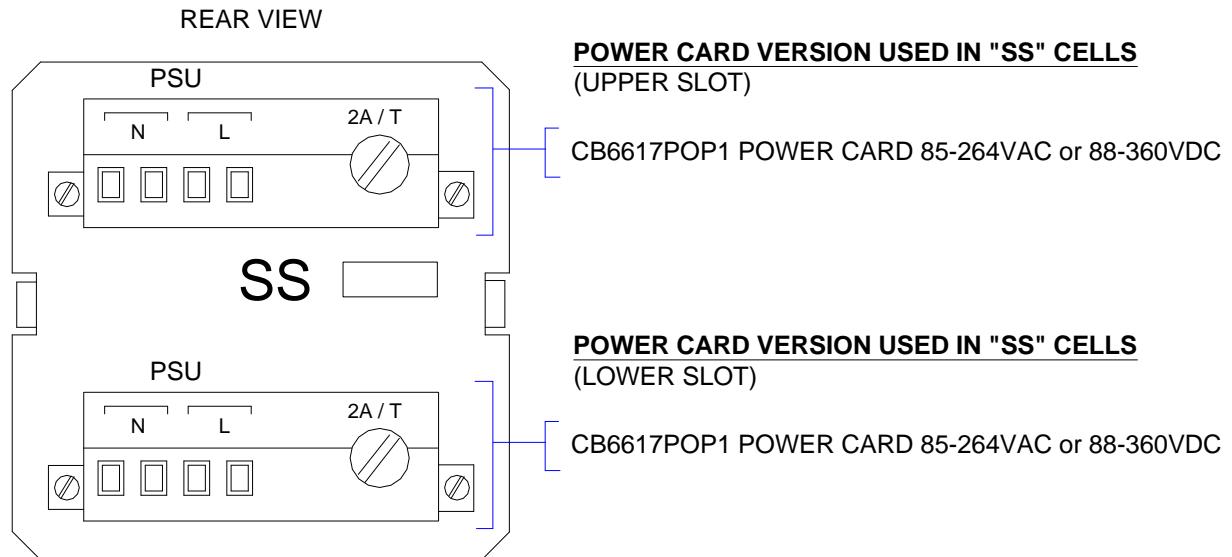
Cell type **AS** is used to provide:-


- Four digital inputs for use with volt-free or powered contacts
- Universal Input Power Supply capable of accepting either:-
- AC voltages in the range 85-264VAC or
- DC voltages in the range 88-360VDC
- The Power Supply card is located in the upper card slot as typically shown above.
- The power supply is suitable for use with a number of cells which varies depending on the window size used and the options fitted.
- Multiple power supply cards can be used in larger annunciators.
- The drawing above indicates the standard card types available for cell type AS

AS Cell - Differential Input Version

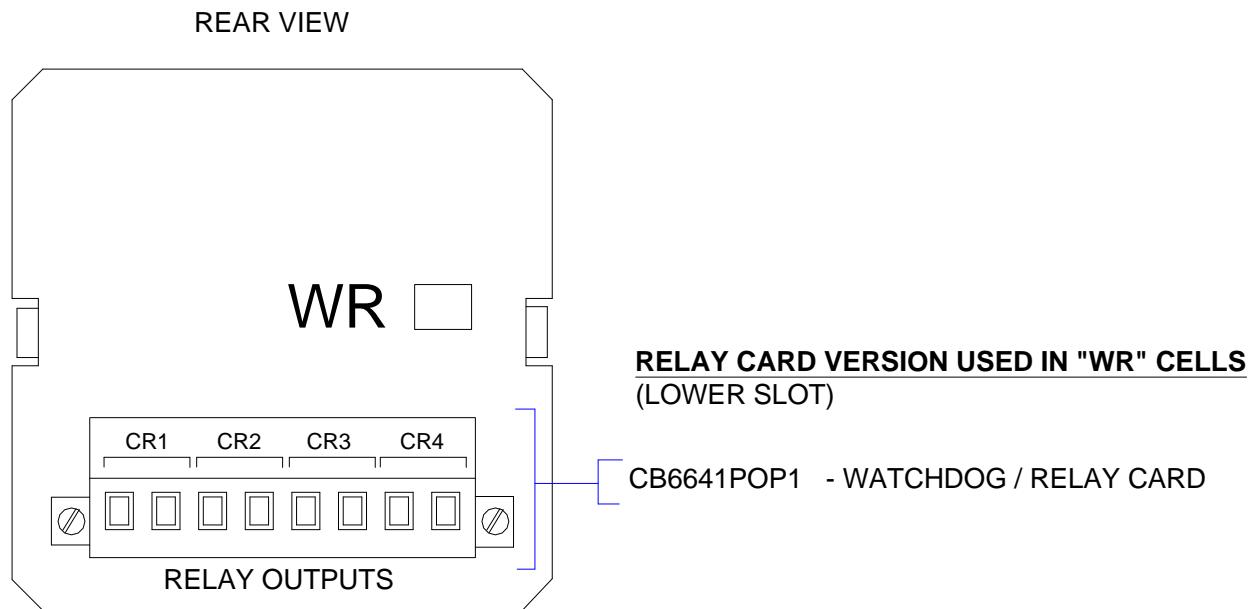
Cell type **AS** is used to provide:-

- Four Isolated digital inputs for use with volt-free or powered contacts
- Universal Input Power Supply capable of accepting either:-
- AC voltages in the range 85-264VAC or
- DC voltages in the range 88-360VDC
- The Power Supply card is located in the upper card slot as typically shown above.
- The power supply is suitable for use with a number of cells which varies depending on the window size used and the options fitted.
- Multiple power supply cards can be used in larger annunciators.
- The drawing above indicates the standard card types available for cell type AS
- Fuse FU-2A-004 5 x 20 mm 2A Fuse is used to protect the primary


S Cell Detail (Supply Cell)

Cell type **S** is used to provide:-

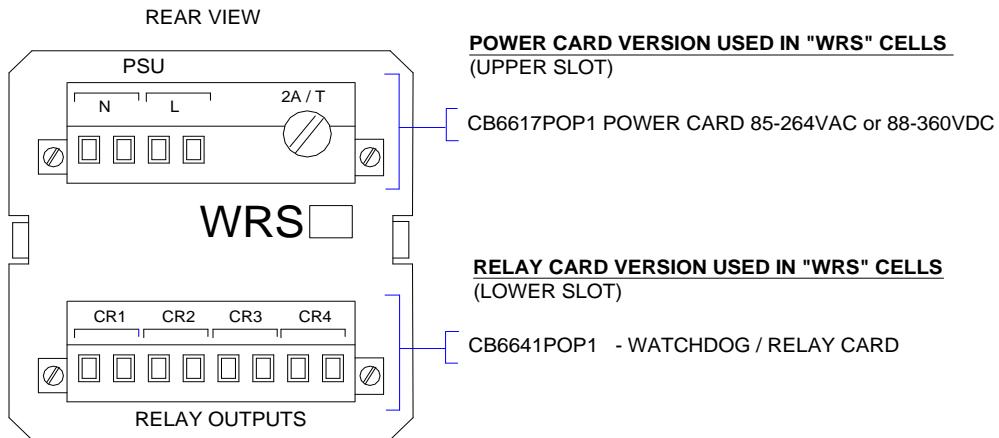
- Universal Input Power Supply capable of accepting either:-
- AC voltages in the range 85-264VAC or
- DC voltages in the range 88-360VDC
- The Power Supply card is located in the upper card slot as typically shown above.
- The power supply is suitable for use with a number of cells which varies depending on the window size used and the options fitted.
- Multiple power supply cards can be used in larger annunciators.
- Fuse FU-2A-004 5 x 20 mm 2A Fuse is used to protect the primary


SS Cell Detail

(Supply - Supply Cell)

Cell type **SS** is used to provide:-

- Dual Universal Input Power Supply each capable of accepting either
- AC voltages in the range 85-264VAC or
- DC voltages in the range 88-360VDC
- The Power Supply cards are located in the upper and lower card slot of the cell as typically shown above.
- The dual power supply is suitable for use with a number of cells which varies depending on the window size and the options required.
- Multiple power supply cards can be used in larger annunciators as required.
- Fuse FU-2A-004 5 x 20 mm 2A Fuse is used to protect the primary

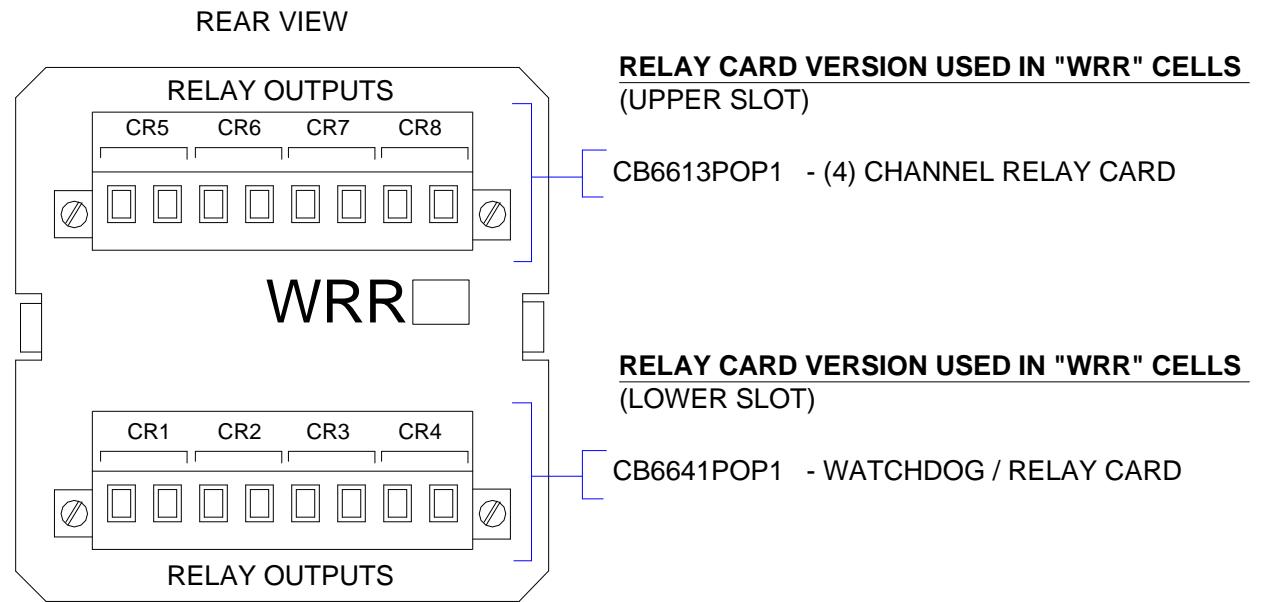

WR Cell Detail (Watchdog - Relay Cell)

Cell type **WR** is used to provide:-

WR cells are equipped with a four channel relay card which provide

- Four Common Relays which can be programmed for use as horn, common alarm or diagnostic watchdog relays
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The non alarm coil state of each relay can be programmed to be either EN or DE-EN.

WRS Cell Detail (Watchdog / Relay - Supply Cell)

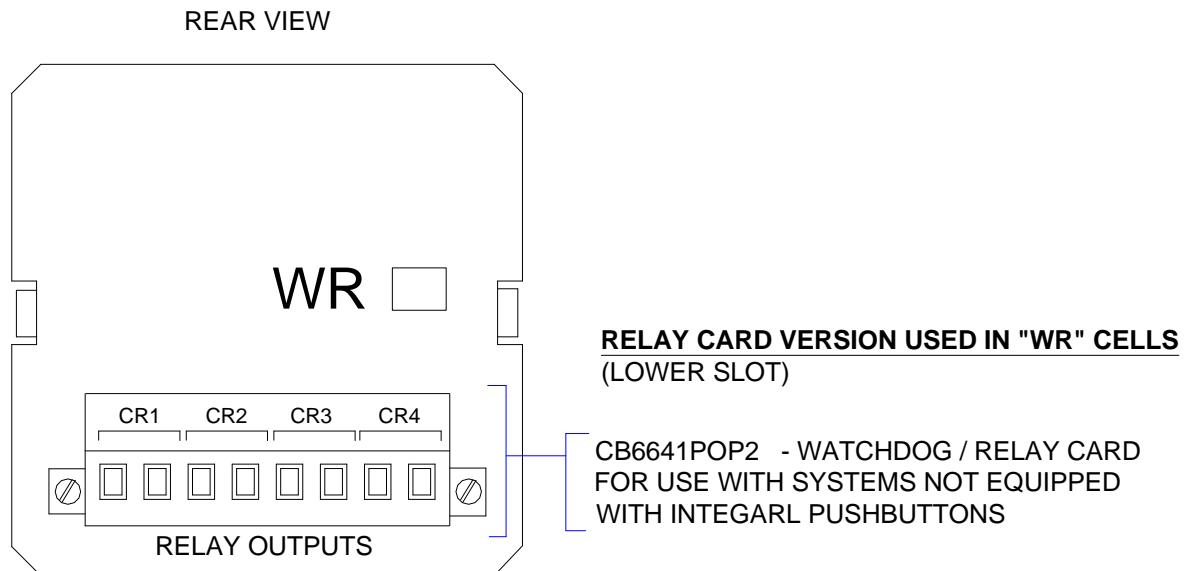


Cell type **WRS** is used to provide:-

WR cells are equipped with a four channel relay card which provide

- Four Common Relays which can be programmed for use as horn, common alarm or watchdog relays
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The non alarm coil state of each relays can be programmed to be either EN or DE-EN
- Universal Input Power Supply capable of accepting:-
 - AC voltages in the range 85-264VAC or
 - DC voltages in the range 88-360VDC
 - The Power Supply card is located in the upper card slot and the common relay card is located in the lower card slot as typically shown above.
- The power supply is suitable for use with a number of cells which varies depending on the window size and options required
- Multiple power supply cards can be used in larger annunciators as required.
- Fuse FU-2A-004 5 x 20 mm 2A Fuse is used to protect the primary

WRR Cell Detail (Watchdog / Relay - Relay Cell)

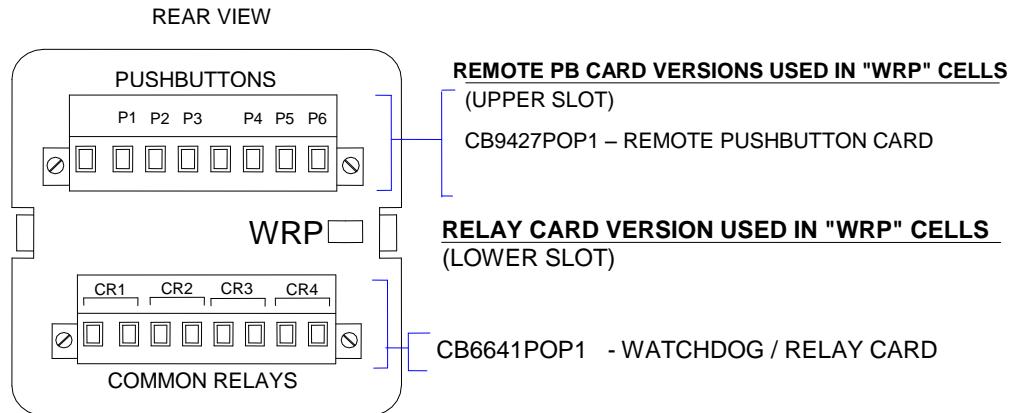


Cell type **WRR** is used to provide:-

WRR cells are equipped with two four channel relay cards which provide

- Eight Common Relays which can be programmed for use as horn, common alarm or diagnostic watchdog relays
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The non alarm coil state of each relay can be programmed to be either EN or DE-EN

Optional WR Cell Detail (Watchdog - Relay Cell) used on systems not equipped with integral Pushbutton / Programming Modules



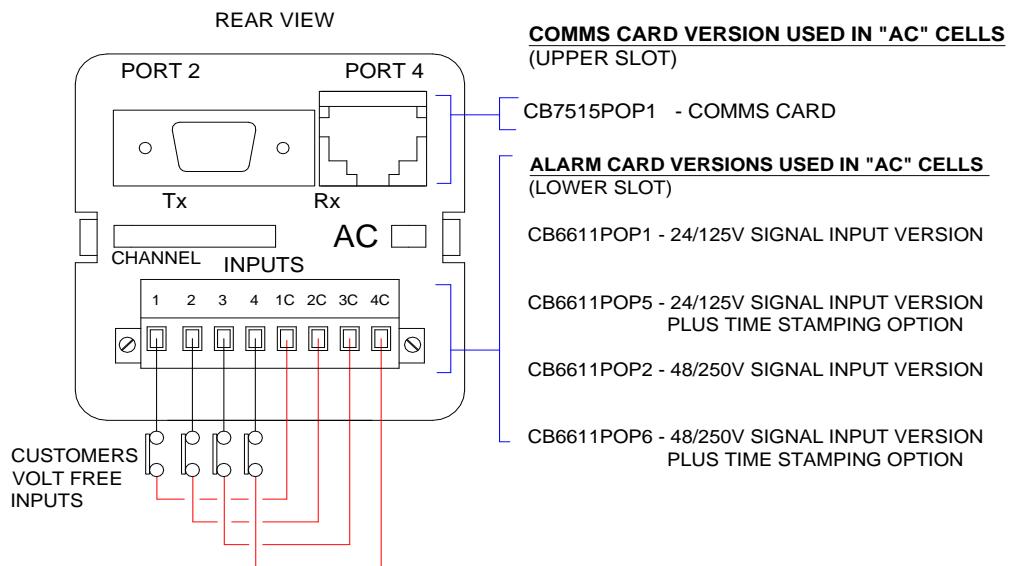
This version of Cell type **WR** is used on systems that are not equipped with the integral pushbutton / programming module.

This version of the WR cell is equipped with a four channel relay card plus a USB programming port which provide

- Four Common Relays which can be programmed for use as horn, common alarm or diagnostic watchdog relays
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The non alarm coil state of each relay can be programmed to be either EN or DE-EN.
- USB Programming port which is located on the underside of the associated cell to allow the unit to be programmed.

WRP Cell Detail (Watchdog Relay Card - Remote Pushbutton)

Cell type **WRP** is used to provide:-

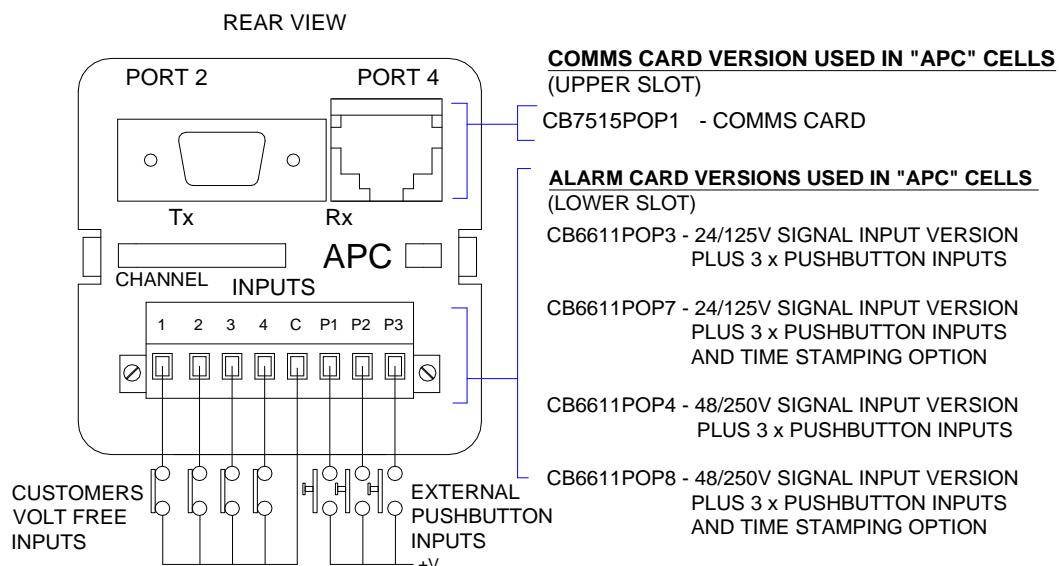

Four channel relay card which provide

- Four Common Relays which can be programmed for use as horn, common alarm or watchdog relays
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The non alarm coil state of each relays can be programmed to be either EN or DE-EN

Remote Pushbutton Card that provides:

- Six external pushbutton inputs for use with optional remote mounting pushbuttons as required.
- Each of the external pushbutton inputs can be programmed to operate as either:- Lamp Test, Silence, Acknowledge, Reset, 1st Reset or System Test or Sleep Mode as required. The common return for all remote pushbuttons is +V (+24VDC)

AC Cell Detail (Alarm – Comm's Cell)

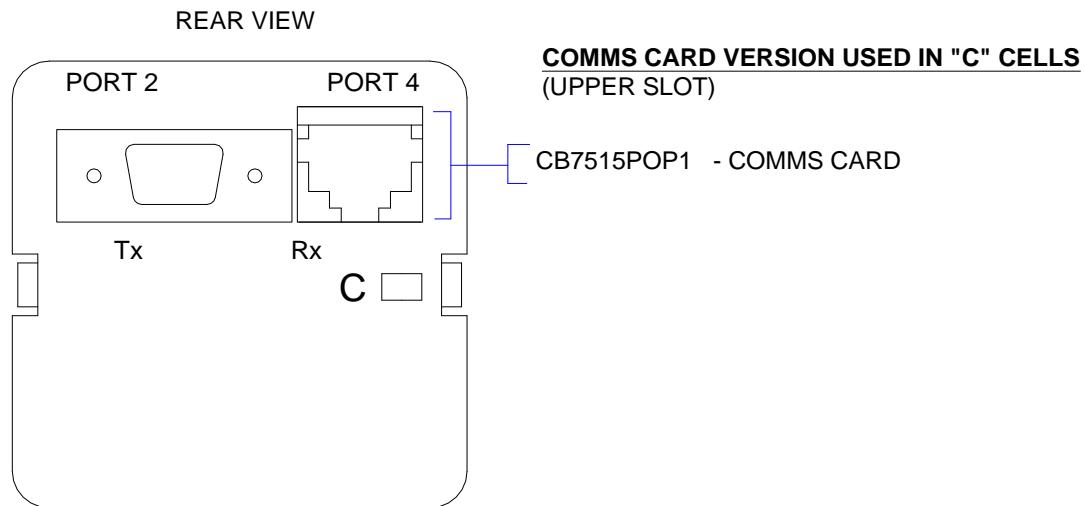

Cell type **AC** is used to provide:-

- Four digital inputs for use with volt-free or powered contacts.

Comm's Card that provides:

- One isolated RS485 Port via a standard 9-way D-type connector.
- One isolated Ethernet port via a standard RJ45 connector.
- Rx and TX LED's on both ports for diagnostic purposes.

APC Cell Detail (Alarm – Pushbutton - Comm's Cell)

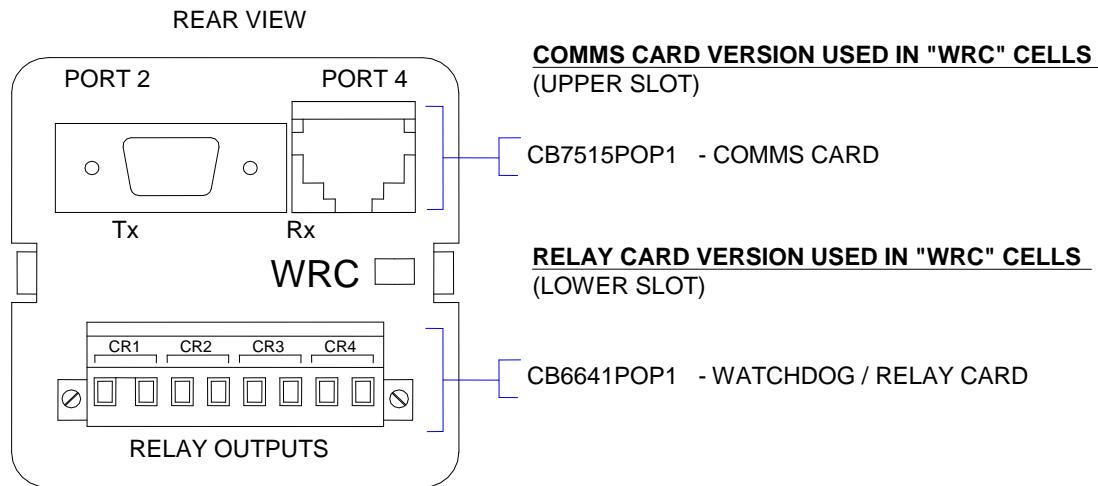

Cell type **APC** is used to provide:-

- Four digital inputs for use with volt-free or powered contacts
- Three external pushbutton inputs for use with optional remote mounting pushbuttons as required.
- Each of the external pushbutton inputs can be programmed to operate as either:- Lamp Test, Silence, Acknowledge, Reset, 1st Reset or System Test or Sleep Mode as required. The common return for all remote pushbuttons is +V (+24VDC)
- The drawing above indicates the standard card types available for cell type APC.

Comm's Card that provides:

- One Isolated RS485 Port via a standard 9-way D-type connector.
- One Isolated Ethernet port via a standard RJ45 connector.
- Rx and TX LED's on both ports for diagnostic purposes.

C Cell Detail (Comm's Cell)

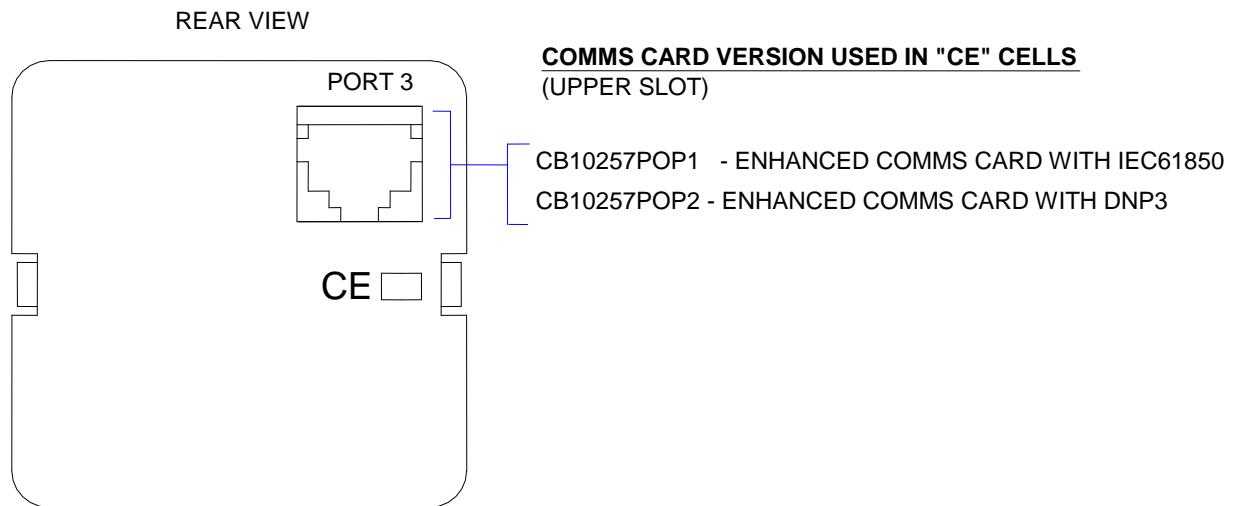


Cell type **C** is used to provide:-

Comm's Card that provides:

- One Isolated RS485 Port via a standard 9-way D-type connector.
- One Isolated Ethernet port via a standard RJ45 connector.
- Rx and TX LED's on both ports for diagnostic purposes.

WRC Cell Detail (Watchdog / Relay - Comm's Cell)

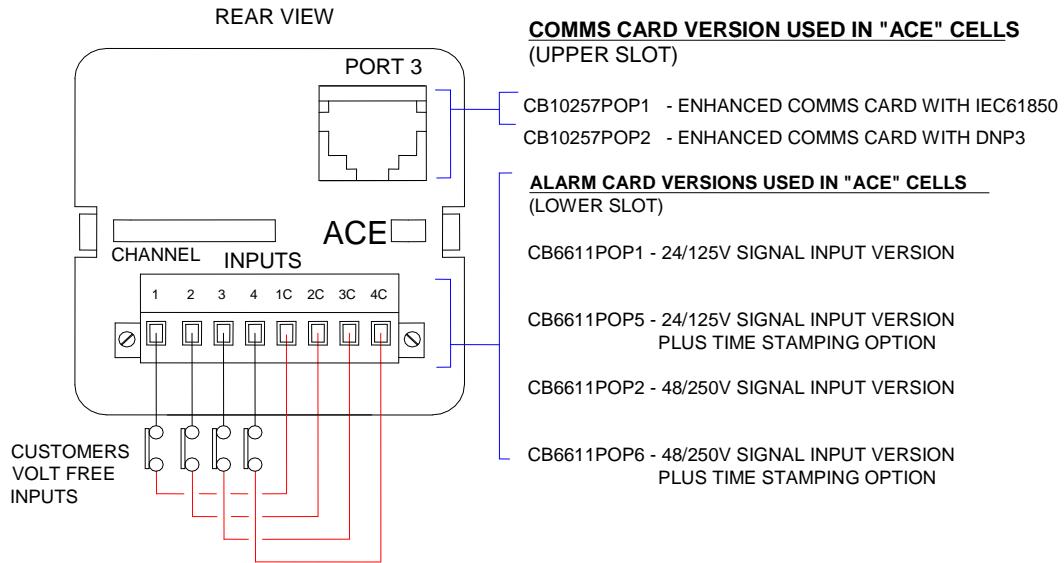

Cell type **WRC** is used to provide:-

WR cells are equipped with a four channel relay card which provide

- Four Common Relays which can be programmed for use as horn, common alarm or watchdog relays
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The non alarm coil state of each relays can be programmed to be either EN or DE-EN

Comm's Card that provides:

- One Isolated RS485 Port via a standard 9-way D-type connector.
- One Isolated Ethernet port via a standard RJ45 connector.
- Rx and TX LED's on both ports for diagnostic purposes.

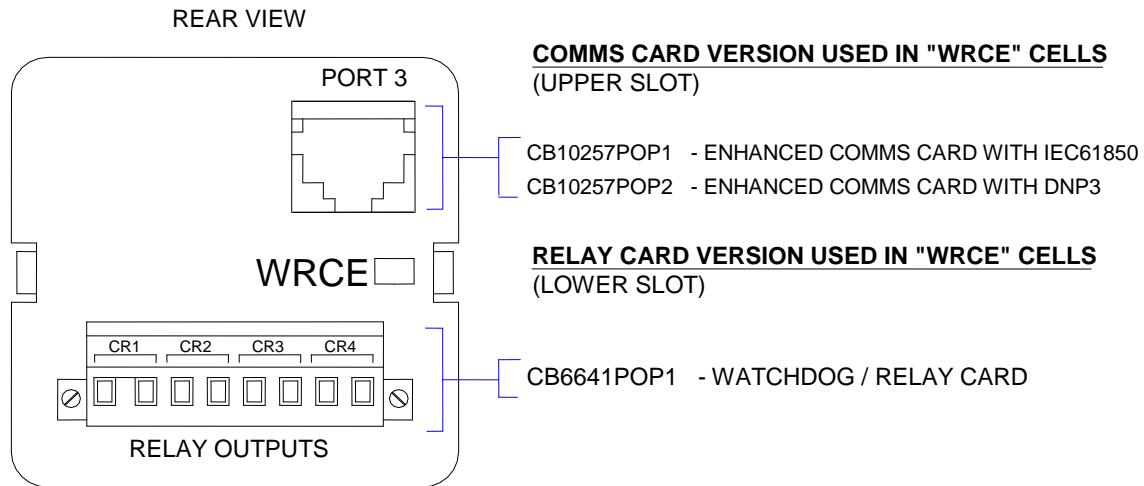

CE Cell Detail (Comm's Enhanced Cell)

Cell type **CE** is used to provide:-

Enhanced Comm's Card that provides:

- One Isolated Ethernet port via a standard RJ45 connector.

ACE Cell Detail (Alarm – Comm's Enhanced Cell)


Cell type **ACE** is used to provide:-

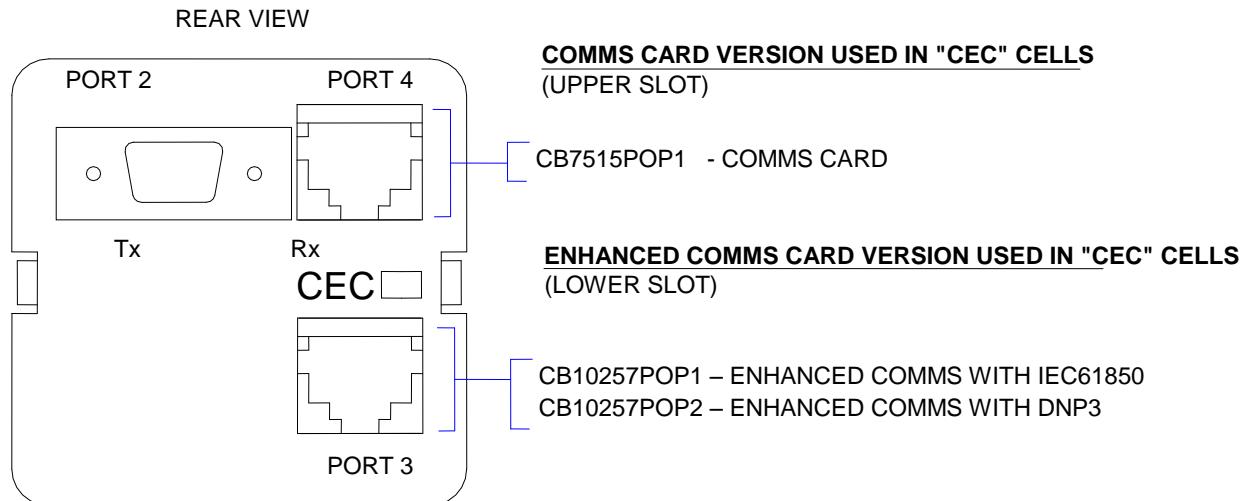
- Four digital inputs for use with volt-free or powered contacts.

Enhanced Comm's Card that provides:

- One isolated Ethernet port via a standard RJ45 connector.

WRCE Cell Detail (Watchdog / Relay - Comm's Enhanced Cell)

Cell type **WRCE** is used to provide:-


WR cells are equipped with a four channel relay card which provide

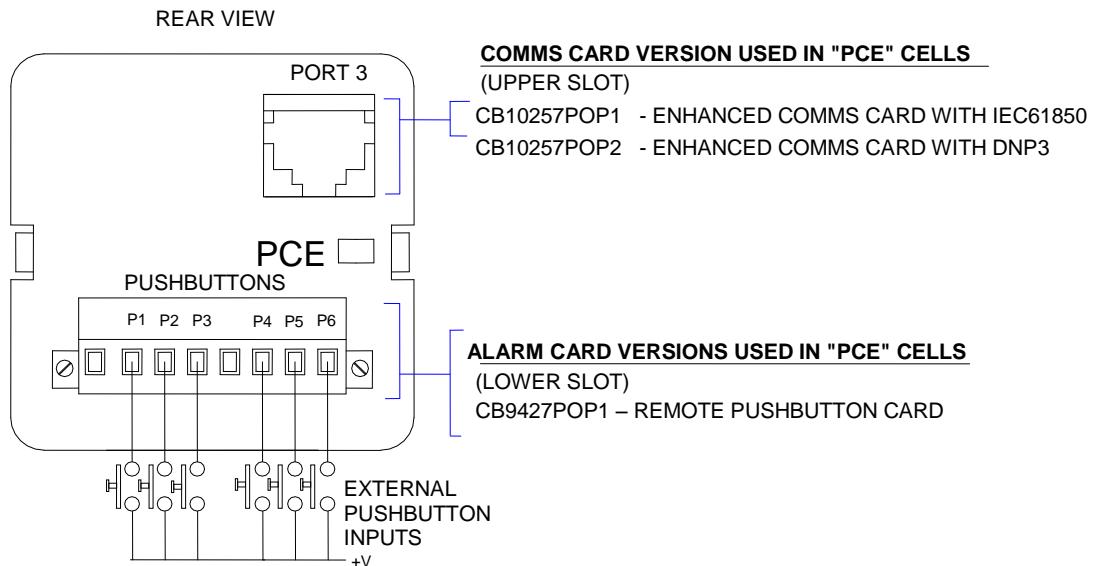
- Four Common Relays which can be programmed for use as horn, common alarm or watchdog relays
- Each of the output contacts can be set to N/C or N/O using a 3 way header and 2 way shorting bar located on the card.
- The non alarm coil state of each relays can be programmed to be either EN or DE-EN

Enhanced Comm's Card that provides:

- One Isolated Ethernet port via a standard RJ45 connector.

CEC Cell Detail (Comm's Enhanced – Comm's Cell)

Cell type **CEC** is used to provide:-


Comm's Card that provides:

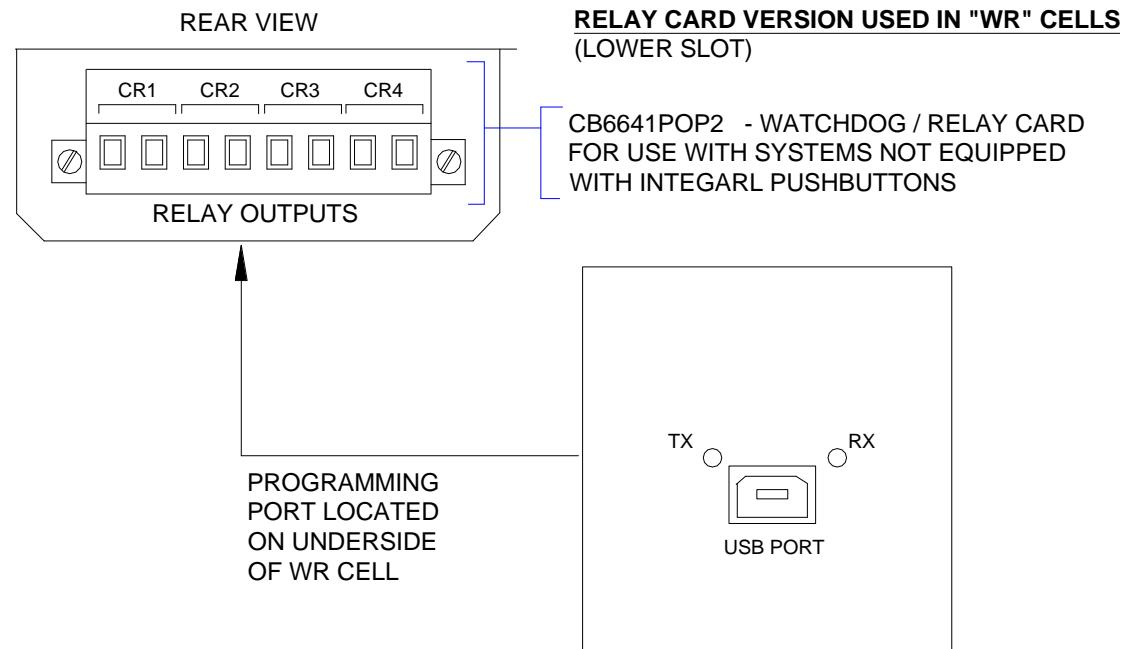
- One Isolated RS485 Port via a standard 9-way D-type connector.
- One Isolated Ethernet port via a standard RJ45 connector.
- Rx and TX LED's on both ports for diagnostic purposes.

Enhanced Comm's Card that provides:

- One Isolated Ethernet port via a standard RJ45 connector.

PCE Cell Detail (Remote Pushbutton - Comm's Cell)

Cell type **PCE** is used to provide:-


- Six external pushbutton inputs for use with optional remote mounting pushbuttons as required.
- Each of the external pushbutton inputs can be programmed to operate as either:- Lamp Test, Silence, Acknowledge, Reset, 1st Reset or System Test or Sleep Mode as required. The common return for all remote pushbuttons is +V (+24VDC)

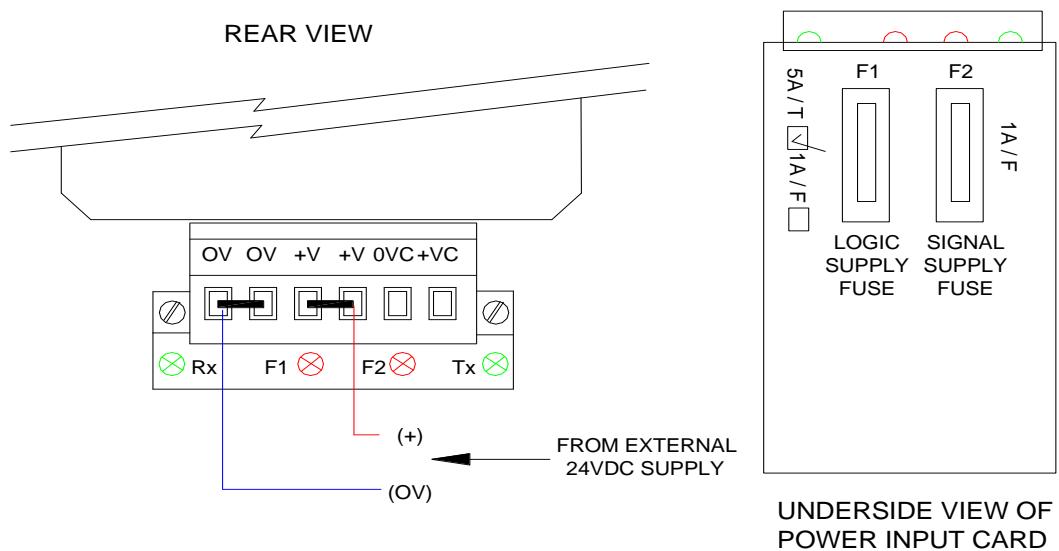
Enhanced Comm's Card that provides:

- One Isolated Ethernet port via a standard RJ45 connector.

USB Programming Port Location

The USB port has TX and RX Status LED's to monitor communication activity.

SECTION 3 – LOGIC SUPPLY & FUSING


All 725B Alarm Annunciators operate from a 24VDC logic supply.

Externally Powered Systems

When external power supplies are used 24VDC must be connected to terminals OV and +V as shown below.

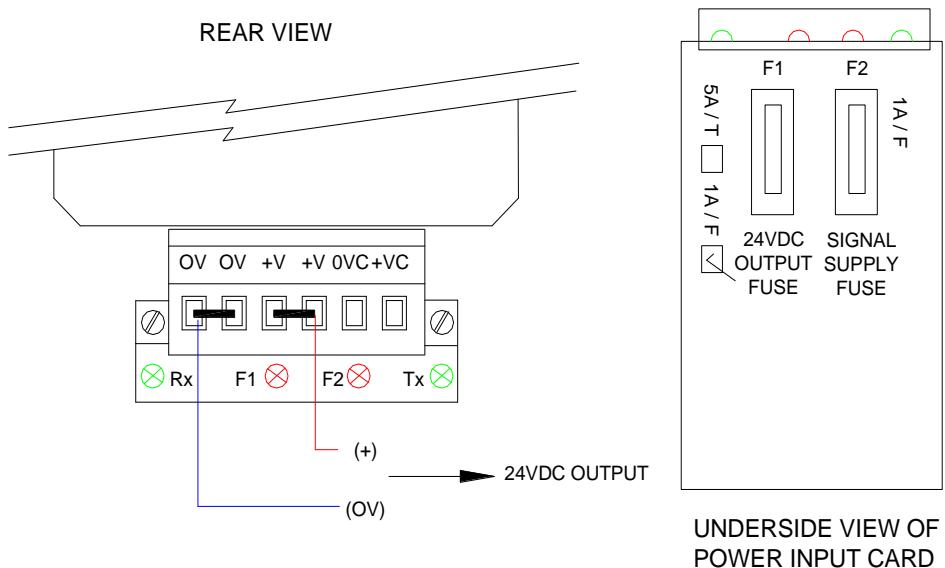
Fuse F1, (5 x 20mm 5A), is provided on the underside of the power input card to protect the alarm logic and +24VDC is internally linked to all of the associated cards within the system.

Red LED **F1** is used to indicate that the +V fuse has blown.

Fuses

FU-1A-002 - 5 x 20mm 1A signal supply fuse

FU-5A-003 - 5 x 20mm 5A logic supply fuse


SI/O Card Versions

Part No	Description
CB6648POP1	Used on standard versions with remote power supplies
CB6648POP3	Used on versions with RS485 communications & remote power supplies

Systems using Internal Power Cards

When internal power supply cards are used the logic voltage is internally connected and +V is used to provide a 1A 24VDC output for use as a signal supply voltage.

Fuse F1 (5 x 20 mm 1A), is provided on the underside of the power input card to protect the 24VDC output.

Fuses

FU-1A-002 - 5 x 20mm 1A signal supply fuse

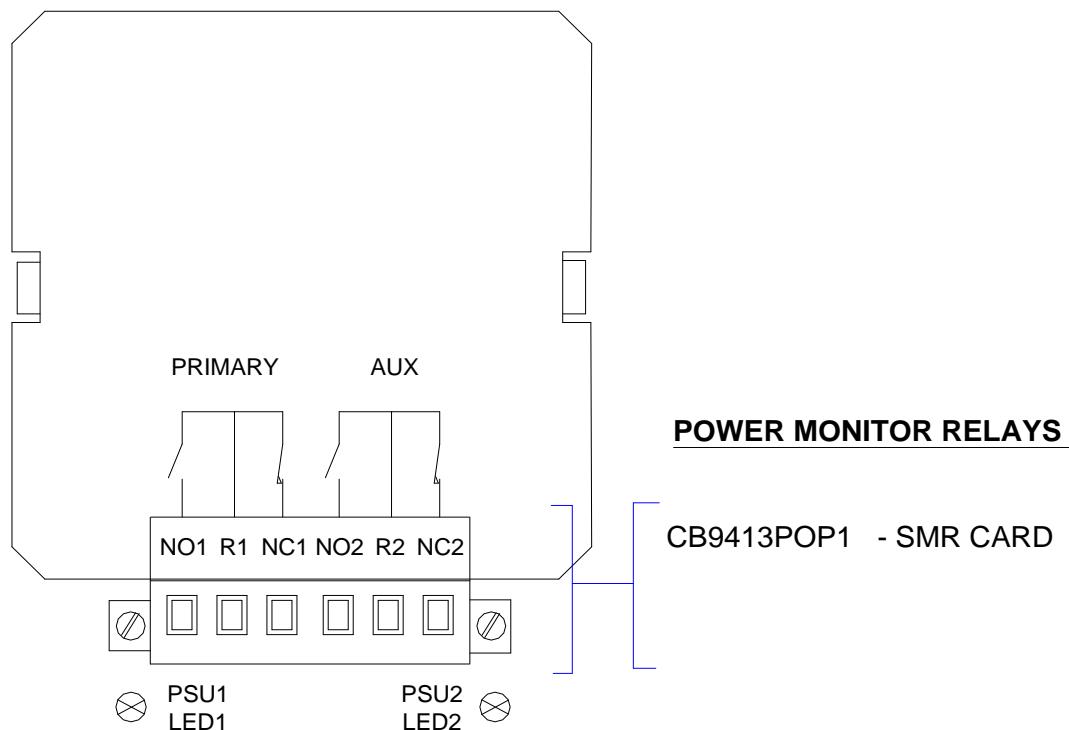
FU-1A-002 - 5 x 20mm 1A – 24vdc output protection fuse

SI/O Card Versions

Part No	Description
CB6648POP2	Used on standard versions with integral power supplies
CB6648POP4	Used on versions with RS485 communications & integral power supplies

SECTION 4 – POWER SUPPLY MONITORING

Power Monitor Relays


On units with integral PSUs each annunciator can be equipped with two integral power monitor relays which provide volt-free contacts for use with 3rd party devices to indicate loss of primary or aux supplies. Both relays provide volt-free changeover contacts for customer use. The power monitor relays are provided on a separate plug-in card in the lower section of the annunciator.

The power monitor relays can be configured as either normally energised or normally de-energised, the factory default setting is energised. For instructions on how to change this setting, please refer to the 725B Configuration Software manual.

Power Monitor LED's

2 x Green LED's are provided just below the customer terminals to indicate if the power is present on the primary aux supplies.

- The left-hand LED,(PSU1 LED1), is ON when the aux supply is present and will flash when the aux supply is lost (as long as the primary supply is available to power the LED)
- The right-hand LED,(PSU2 LED2), is ON when the primary supply is present and will flash when the primary supply is lost (as long as the aux supply is available to power the LED)

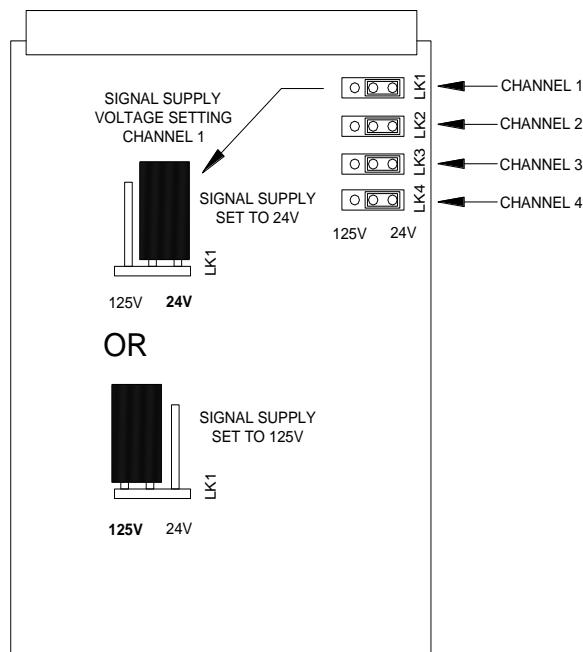
SECTION 5 - SIGNAL VOLTAGE SETTING / WIRING

Setting Inputs for use with 24VDC or 125VDC

On standard 725B systems each 4 channel alarm card is suitable for use with 24VDC or 125VDC signal inputs.

Each channel on the alarm card is equipped with a 3 pin header and 2 way shorting bar that allows the user to set the input to match the required signal input voltage level. (24V or 125V)

Setting Inputs for use with 24VAC or 125VAC


725B signal inputs are bi-polar and therefore suitable for use with 24VAC or 125VAC.

Each channel on the alarm card is equipped with a 3 pin header and 2 way shorting bar that allows the user to set the input to match the required signal input voltage level. (24V or 125V)

However when using AC inputs additional filters are added which result in a 25mS response time before the alarm activates.

In systems using Time Stamping the alarm would still indicate the time the alarm first occurred to the millisecond.

To set the signal supply voltage on each input to either 24VDC, 24VAC, 125VDC or 125VAC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled “Field Contact Voltage (V)”

The settings are available on the following (4) channel alarm cards

Card Type	Features
CB6611POP1	24/125V Signal Input
CB6611POP3	24/125V Signal Input plus 3 x Pushbutton Inputs
CB6611POP5	24/125V Signal Input and Time Stamping Option
CB6611POP7	24/125V Signal Input plus 3 x Pushbutton Inputs and Time Stamping Option

Differential Input Versions

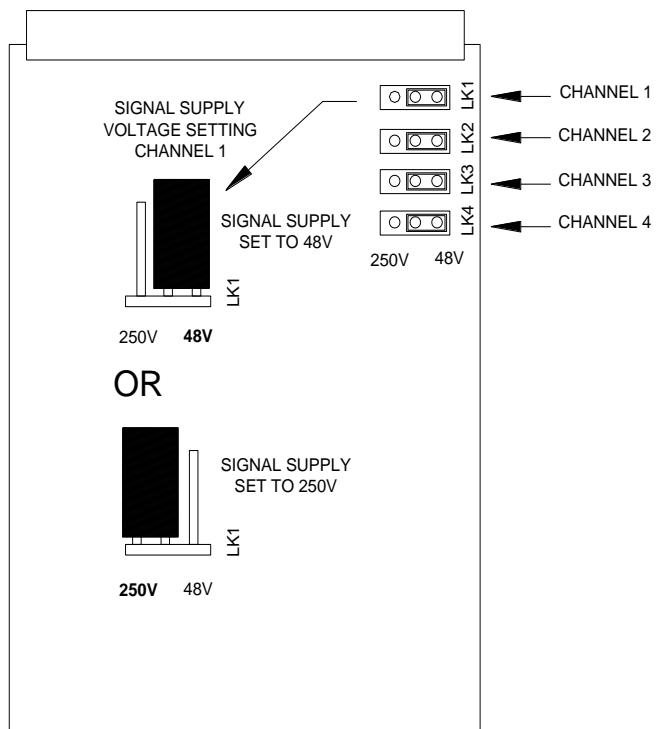
Card Type	Features
CB6611POP9	24/125V Differential Signal Inputs
CB6611POP11	24/125V Differential Signal Inputs plus Time Stamping Option

Setting Inputs for use with 48VDC or 250VDC

As an option 725B systems can be supplied with each 4 channel alarm card suitable for use with 48VDC or 250VDC signal inputs.

Each channel on the alarm card is equipped with a 3 pin header and 2 way shorting bar that allows the user to set the input to match the required signal input voltage level. (48V or 250V)

Setting Inputs for use with 48VAC or 250VAC

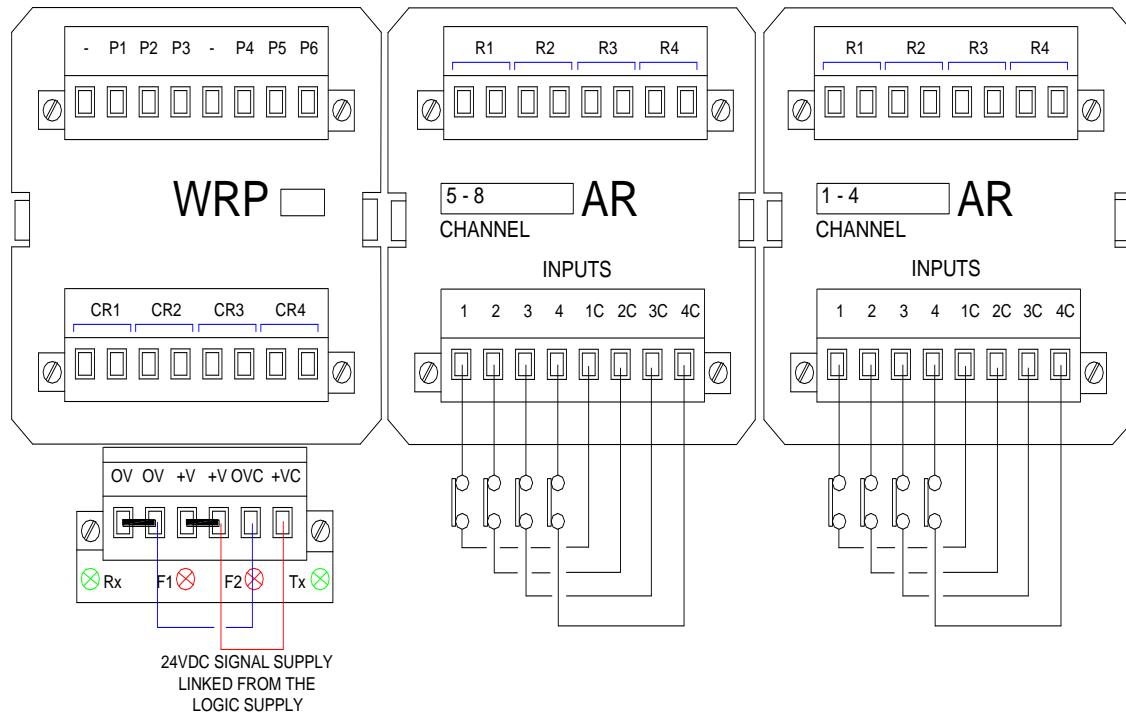

725B signal inputs are bi-polar and therefore suitable for use with 48VAC or 250VAC.

Each channel on the alarm card is equipped with a 3 pin header and 2 way shorting bar that allows the user to set the input to match the required signal input voltage level. (48V or 250V)

However when using AC inputs additional filters are added which result in a 25mS response time before the alarm activates.

In systems using Time Stamping the alarm would still indicate the time the alarm first occurred to the millisecond.

To set the signal supply voltage on each input to either 48VDC, 48VAC, 250VDC or 250VAC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled “Field Contact Voltage (V)”


The settings are available on the following (4) channel alarm cards

Card Type	Features
CB6611POP2	48/250V Signal Input
CB6611POP4	48/250V Signal Input plus 3 x Pushbutton Inputs
CB6611POP6	48/250V Signal Input and Time Stamping Option
CB6611POP8	48/250V Signal Input plus 3 x Pushbutton Inputs and Time Stamping Option

Differential Input Versions

Card Type	Features
CB6611POP10	48/250V Differential Signal Inputs
CB6611POP12	48/250V Differential Signal Inputs plus Time Stamping Option

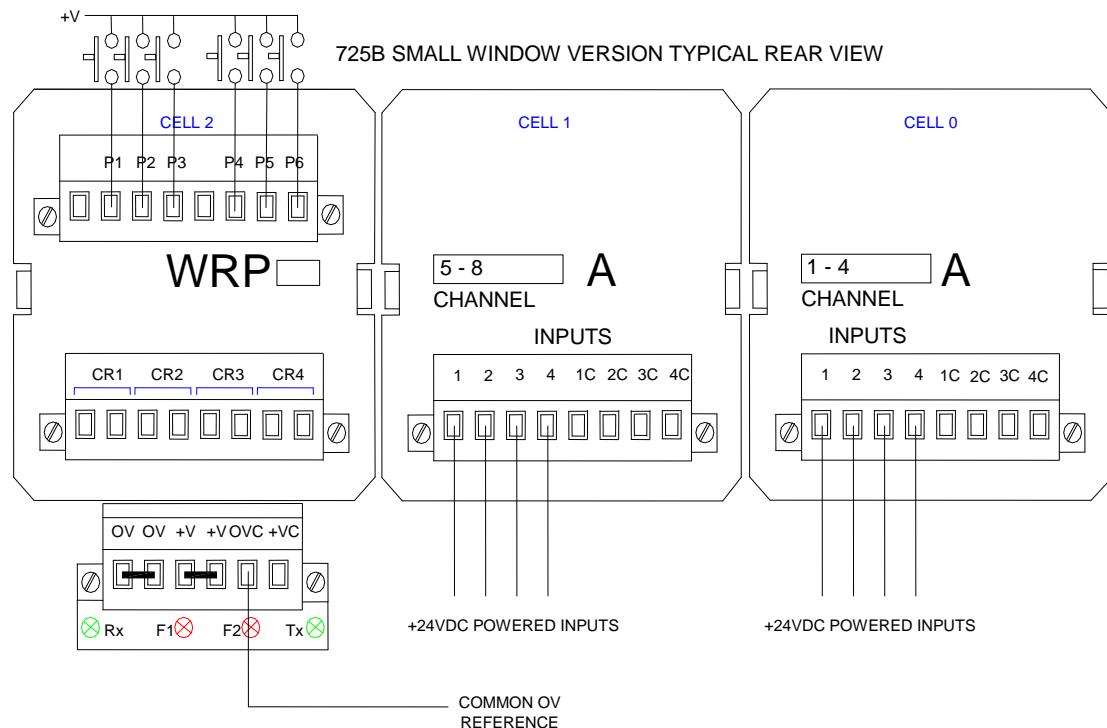
Standard 24VDC Signal Input Wiring

Each channel on the alarm card is provided with a 3 pin header and 2 way shorting bar which allows the user to select the inputs to operate on 24V

On standard 725B systems the 24VDC logic supply is factory linked to the signal supply input terminals as follows:-

Logic Supply		Signal Supply
OV	To	OVC
+V	To	+VC

This provides a +24VDC signal contact supply on all C terminals as shown above.


LED F2 is used to indicate that the signal supply, (+VC), fuse has blown.

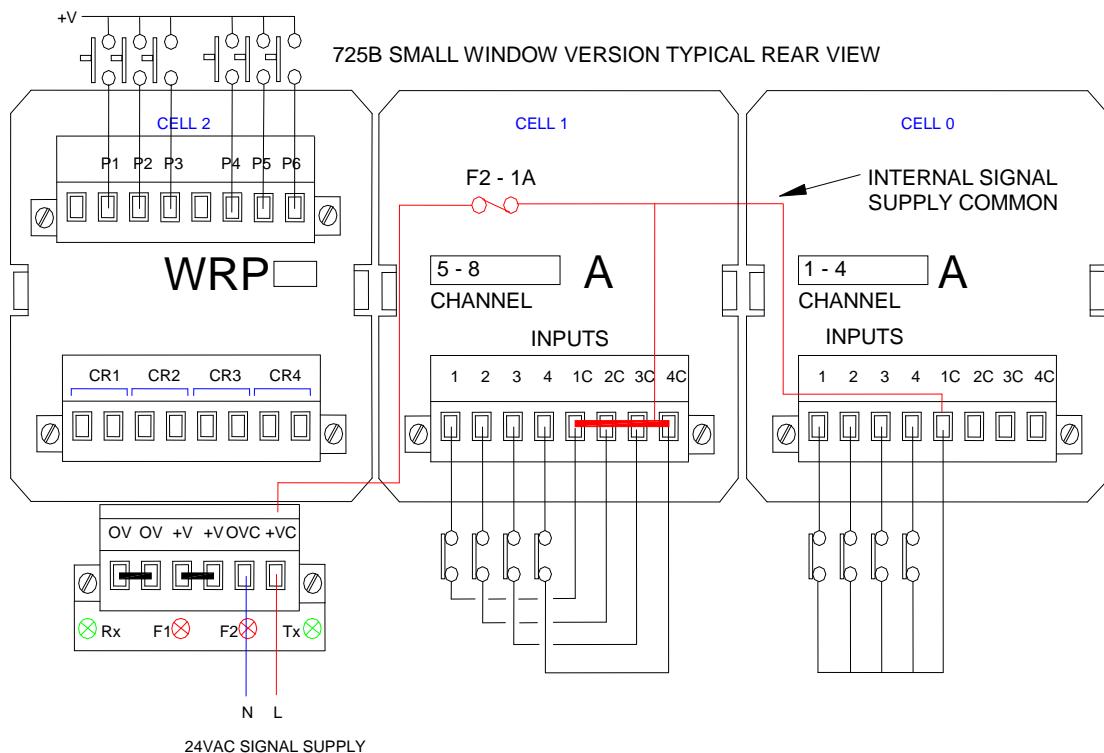
As all *C terminals are internally linked the customer can connect each input contact to a dedicated terminal as shown in the middle cell or a single feed can be used for multiple contacts as shown in the right hand cell.

The common return for all remote pushbuttons is +V (+24VDC)

To set the signal supply voltage on each input to 24VDC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled “Field Contact Voltage (V)”

Optional 24VDC Powered Input Wiring

Each channel on the alarm card is provided with a 3 pin header and 2 way shorting bar which allows the user to select the inputs to operate on 24V


On standard 725B systems the jumper is set to 24VDC and the user is able to power the inputs from 3rd party devices, (PLC, DCS etc).

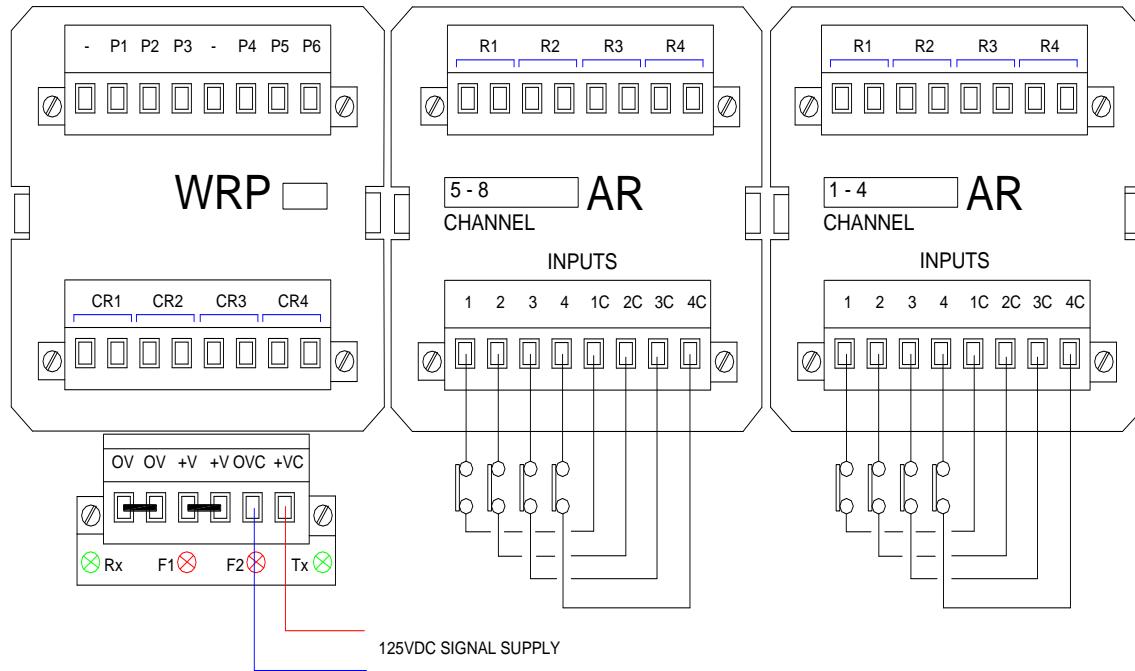
In these applications the user needs to connect the OV of the 3rd party device to the common OVC as shown above and the powered +24VDC input can be directly connected to the associated input terminal

The common return for all remote pushbuttons is +V (+24VDC)

To set the signal supply voltage on each input to 24VDC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled “Field Contact Voltage (V)”

Optional 24VAC Signal Input Wiring

Each channel on the alarm card is provided with a 3 pin header and 2 way shorting bar which allows the user to select the inputs to operate on 24V


LED F2 is used to indicate that the signal supply, (+VC), fuse has blown.

As all *C terminals are internally linked the customer can connect each input contact to a dedicated terminal as shown in the middle cell or a single feed can be used for multiple contacts as shown in the right hand cell.

The common return for all remote pushbuttons is +V (+24VDC)

To set the signal supply voltage on each input to 24VAC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled “Field Contact Voltage (V)”

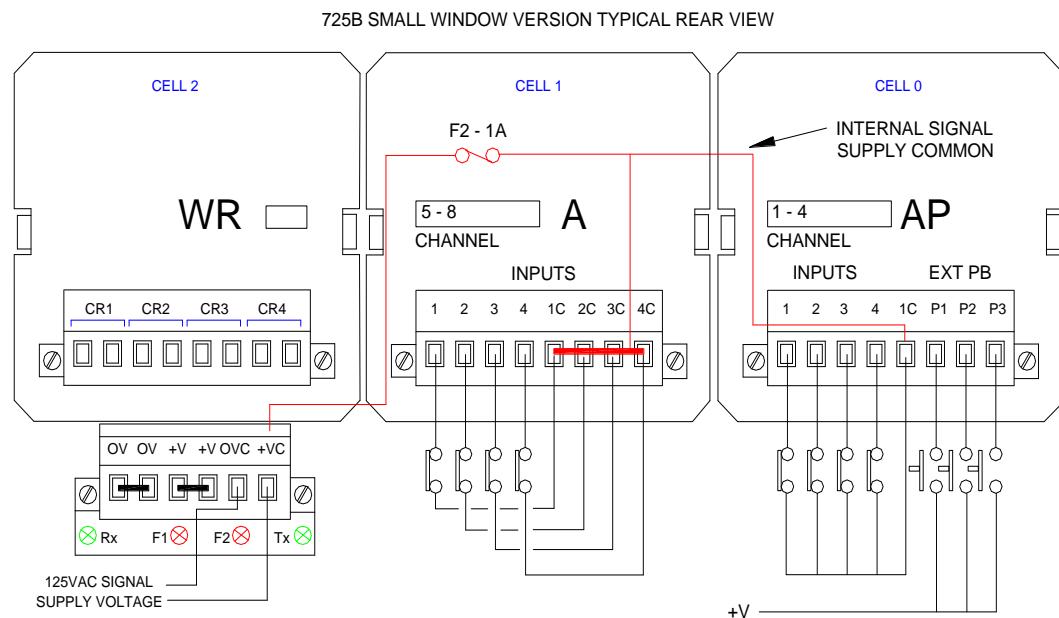
Optional 125VDC Signal Input Wiring

Each channel on the alarm card is provided with a 3 pin header and 2 way shorting bar which allows the user to select the inputs to operate on 125V.

On 725B systems where 125VDC is required as a signal supply voltage this needs to be derived externally and connected to terminals OVC and +VC as typically shown above.

IMPORTANT:- Please ensure there are no external links between the logic supply and the signal supply input terminals i.e. OV and OVC and +V and +VC before applying the high voltage signal supply

LED F2 is used to indicate that the signal supply, (+VC), fuse has blown.


Fuse F2, (5 X 20mm 1A), is provided on the power input card to protect the signal supply voltage and the 125VDC is internally linked to all associated input card *C terminals to allow distribution to the external field contacts.

As all *C terminals are internally linked the customer can connect each input contact to a dedicated terminal as shown in the middle cell or a single feed can be used for multiple contacts as shown in the right hand cell.

The common return for all remote pushbuttons is +V (+24VDC)

To set the signal supply voltage on each input to 125VDC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled “Field Contact Voltage (V)”

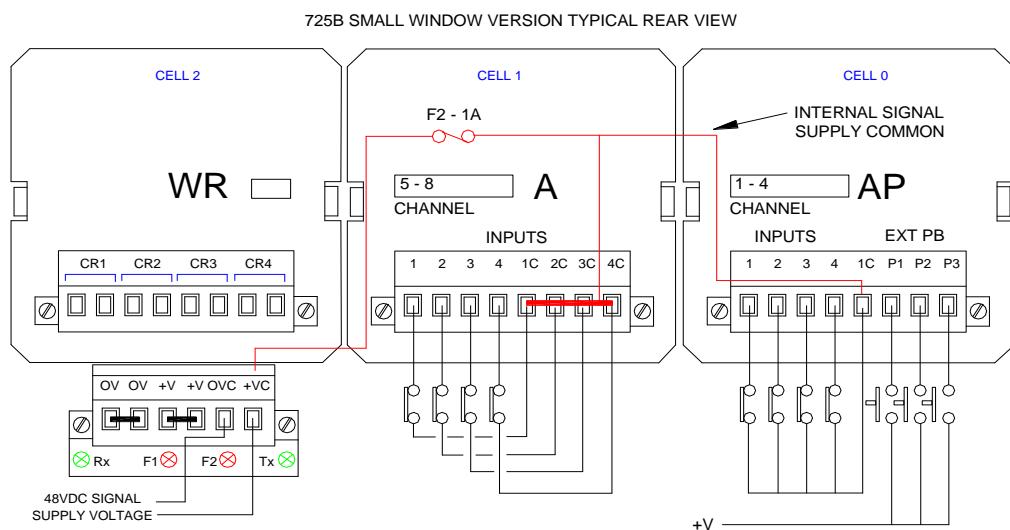
Optional 125VAC Signal Input Wiring

Each channel on the alarm card is provided with a 3 pin header and 2 way shorting bar which allows the user to select the inputs to operate on 125V.

On 725B systems where 125VAC is required as a signal supply voltage this needs to be derived externally and connected to terminals OVC and +VC as typically shown above.

IMPORTANT:- Please ensure there are no external links between the logic supply and the signal supply input terminals i.e. OV and OVC and +V and +VC before applying the high voltage signal supply

LED F2 is used to indicate that the signal supply, (+VC), fuse has blown.


Fuse F2, (5 X 20mm 1A), is provided on the power input card to protect the signal supply voltage and the 125VAC is internally linked to all associated input card *C terminals to allow distribution to the external field contacts.

As all *C terminals are internally linked the customer can connect each input contact to a dedicated terminal as shown in the middle cell or a single feed can be used for multiple contacts as shown in the right hand cell.

The common return for all remote pushbuttons is +V (+24VDC)

To set the signal supply voltage on each input to 125VAC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled “Field Contact Voltage (V)”

Optional 48VDC Signal Input Wiring

Note:- In applications that require 48VDC signal inputs RTK supply optional 4 channel alarm cards in place of the standard version

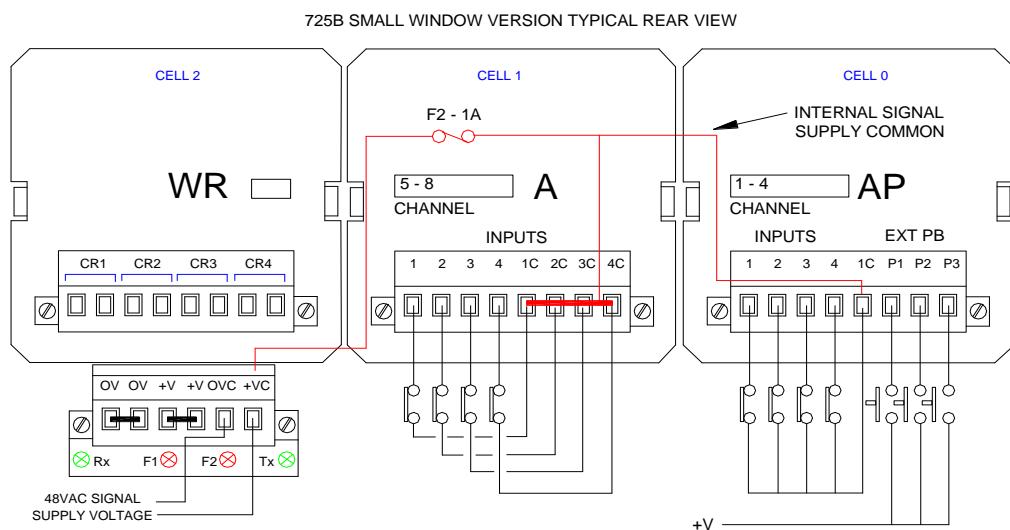
48VDC Signal Supply

Each channel on the alarm card is provided with a 3 pin header and 2 way shorting bar which allows the user to select the inputs to operate on 48V.

On 725B systems where 48VDC is required as a signal supply voltage this needs to be derived externally and connected to terminals OVC and +VC as typically shown above.

IMPORTANT:- Please ensure there are no external links between the logic supply and the signal supply input terminals i.e. OV and OVC and +V and +VC before applying the high voltage signal supply

LED **F2** is used to indicate that the signal supply fuse has blown.


Fuse F2, (5 X 20mm 1A), is provided on the power input card to protect the signal supply voltage and the 48VDC is internally linked to all of the associated input card *C terminals to allow distribution to the external field contacts.

As all *C terminals are internally linked the customer can connect each input contact to a dedicated terminal as shown in the middle cell or a single feed can be used for multiple contacts as shown in the right hand cell.

The common return for all remote pushbuttons is +V (+24VDC)

To set the signal supply voltage on each input to 48VDC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled “Field Contact Voltage (V)”

Optional 48VAC Signal Input Wiring

Note:- In applications that require 48VAC signal inputs RTK supply optional 4 channel alarm cards in place of the standard version

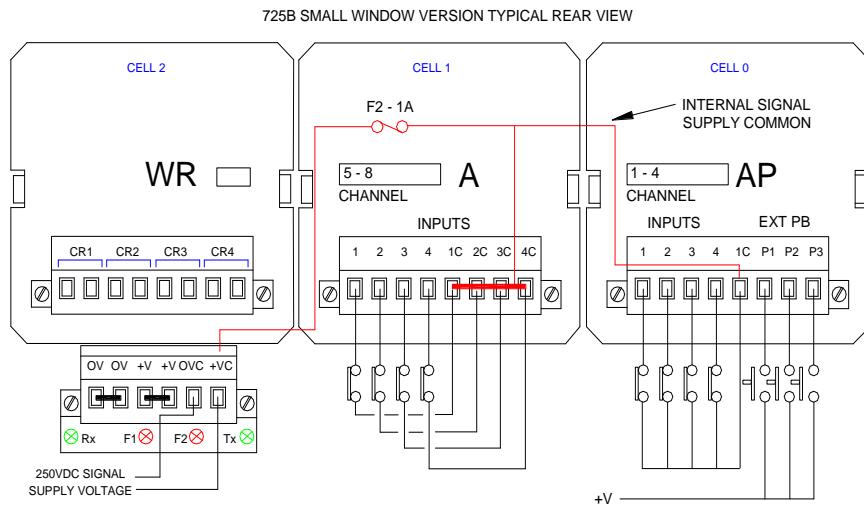
48VAC Signal Supply

Each channel on the alarm card is provided with a 3 pin header and 2 way shorting bar which allows the user to select the inputs to operate on 48V.

On 725B systems where 48VAC is required as a signal supply voltage this needs to be derived externally and connected to terminals OVC and +VC as typically shown above.

IMPORTANT:- Please ensure there are no external links between the logic supply and the signal supply input terminals i.e. OV and OVC and +V and +VC before applying the high voltage signal supply

LED **F2** is used to indicate that the signal supply fuse has blown.


Fuse F2, (5 X 20mm 1A), is provided on the power input card to protect the signal supply voltage and the 48VAC is internally linked to all of the associated input card *C terminals to allow distribution to the external field contacts.

As all *C terminals are internally linked the customer can connect each input contact to a dedicated terminal as shown in the middle cell or a single feed can be used for multiple contacts as shown in the right hand cell.

The common return for all remote pushbuttons is +V (+24VDC)

To set the signal supply voltage on each input to 48VAC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled "Field Contact Voltage (V)"

Optional 250VDC Signal Input Wiring

Note:- In applications that require 250VDC signal inputs RTK supply optional 4 channel alarm cards in place of the standard version

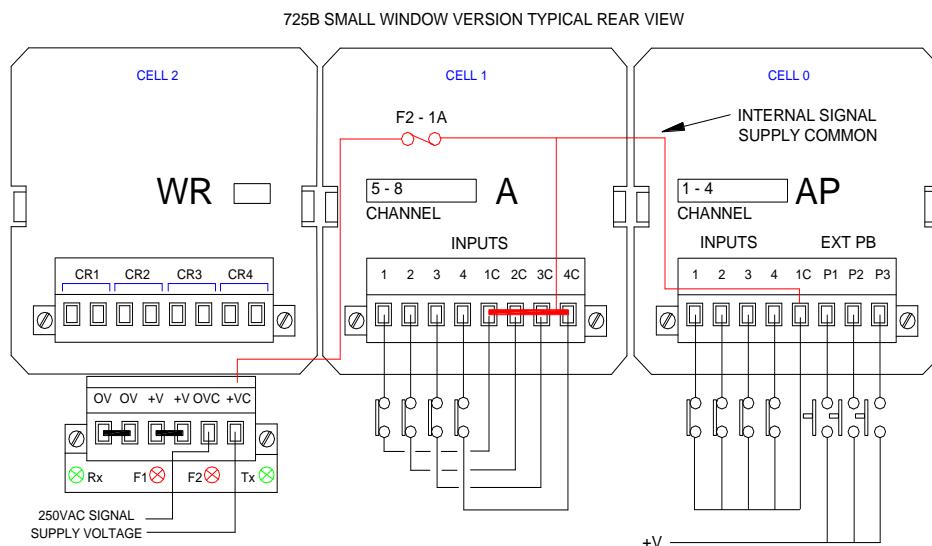
250VDC Signal Supply

Each channel on the alarm card is provided with a 3 pin header and 2 way shorting bar which allows the user to select the inputs to operate on 250V.

On 725B systems where 250VDC is required as a signal supply voltage this needs to be derived externally and connected to terminals OVC and +VC as typically shown above.

IMPORTANT:- Please ensure there are no external links between the logic supply and the signal supply input terminals i.e. OV and OVC and +V and +VC before applying the high voltage signal supply

LED **F2** is used to indicate that the signal supply fuse has blown.


Fuse F2, (5 X 20mm 1A), is provided on the power input card to protect the signal supply voltage and the 250VDC is internally linked to all associated input card *C terminals to allow distribution to the external field contacts.

As all *C terminals are internally linked the customer can connect each input contact to a dedicated terminal as shown in the middle cell or a single feed can be used for multiple contacts as shown in the right hand cell.

The common return for all remote pushbuttons is +V (+24VDC)

To set the signal supply voltage on each input to 250VDC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled "Field Contact Voltage (V)"

Optional 250VAC Signal Input Wiring

Note:- In applications that require 250VAC signal inputs RTK supply optional 4 channel alarm cards in place of the standard version

250VAC Signal Supply

Each channel on the alarm card is provided with a 3 pin header and 2 way shorting bar which allows the user to select the inputs to operate on 250V.

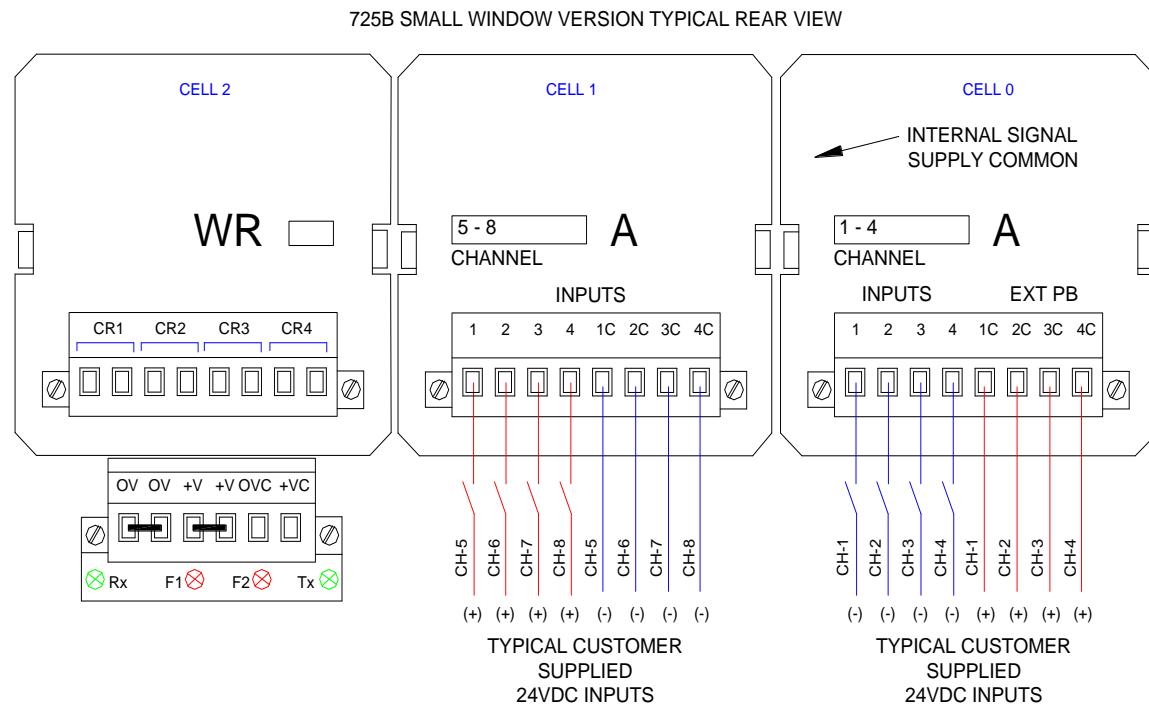
On 725B systems where 250VAC is required as a signal supply voltage this needs to be derived externally and connected to terminals OVC and +VC as typically shown above.

IMPORTANT:- Please ensure there are no external links between the logic supply and the signal supply input terminals i.e. OV and OVC and +V and +VC before applying the high voltage signal supply

LED **F2** is used to indicate that the signal supply fuse has blown.

Fuse F2, (5 X 20mm 1A), is provided on the power input card to protect the signal supply voltage and the 250VAC is internally linked to all associated input card *C terminals to allow distribution to the external field contacts.

As all *C terminals are internally linked the customer can connect each input contact to a dedicated terminal as shown in the middle cell or a single feed can be used for multiple contacts as shown in the right hand cell.


The common return for all remote pushbuttons is +V (+24VDC)

To set the signal supply voltage on each input to 250VAC a drop-down menu is provided in the Configuration Software. Selection is made under the Input tab using the drop-down menu labelled “Field Contact Voltage (V)”

Optional Differential Input Version Wiring

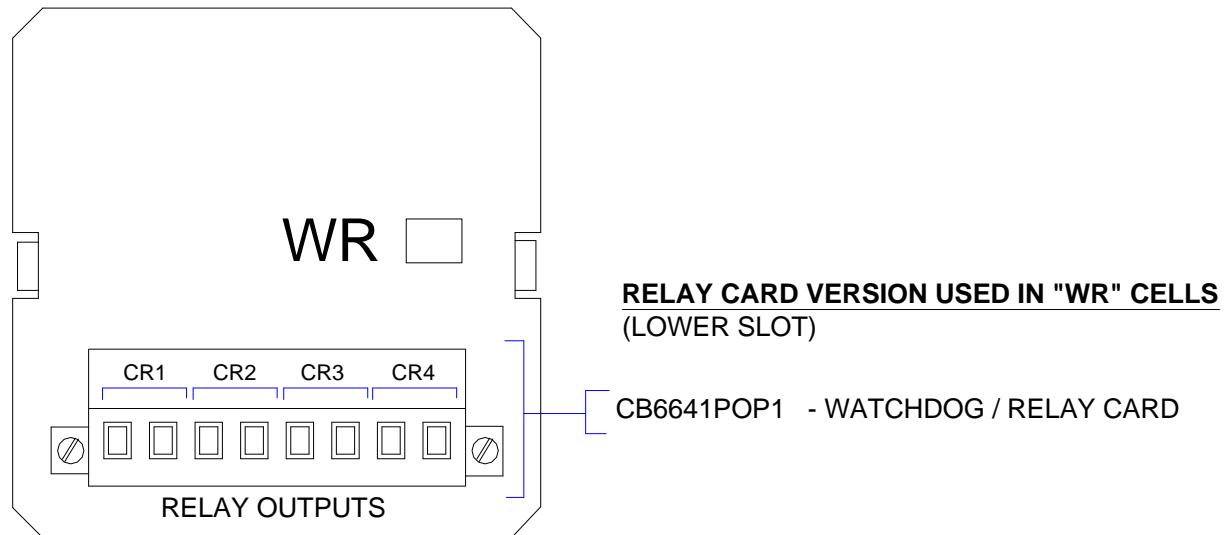
As an option RTK can supply fully isolated inputs for each alarm way.

As the Inputs are bi-polar the user can switch AC or DC voltages as required.

In the above typical example cell 0 is shown with OV switched inputs and cell 1 is shown with +24V switched inputs

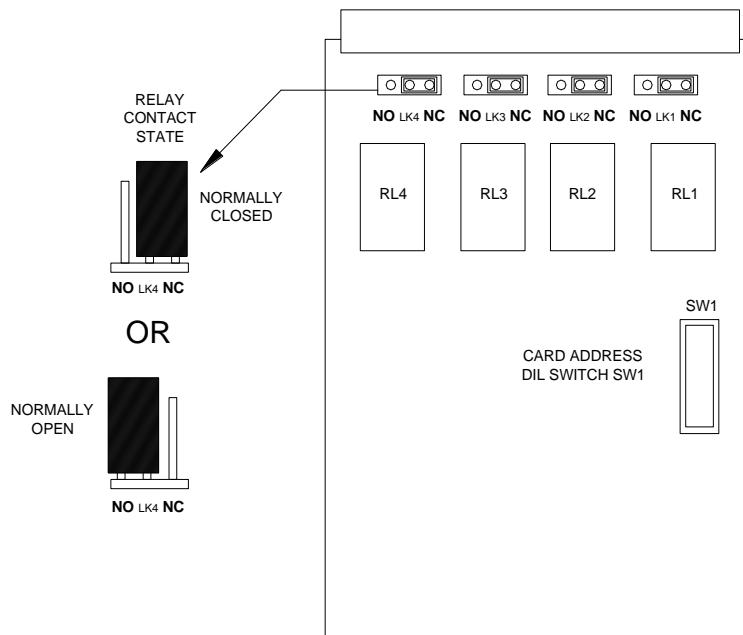
Standard 24V/125V AC/DC Version

Each (4) channel alarm card is provided with a 3 pin header and 2 way jumper link per channel which allows the user to select the input for use with either 24V or 125V as required.


Optional - 48V/250V AC/DC Version

Each (4) channel alarm card is provided with a 3 pin headers and 2 way jumper link which allows the user to select the input for use with either 48V or 250V as required.

Note: When differential inputs are used OV to OVC and +V to +VC must be linked otherwise a permanent FC fault will appear.


SECTION 6 – COMMON RELAYS

REAR VIEW

Four common relays are located in the WR Cell within the Annunciator as shown above.

Each relay is equipped with a C/O contact and the user can select the contact state to N/C or N/O using a 3 way header and 2 way shorting bar located on the card as shown below.

The coil state of each relay can be set to EN or DE-EN as described in the software configuration section of this manual.

Multiple common relay cards may be present in larger systems to provide the necessary features.

The function of each common relay can be set within the software allowing the relay to operate as:-

Group Relay

Once channels have been assigned to groups and the “group operation” has been defined the user is able to link a group to a common relay under the “WR” Tab within the software

The common relay will therefore act in accordance with the selected “group operation” which can be one of the following:-

First-Up

Activates when the first alarm occurs within a group

Input

Activates on alarm and remains active until the input has returned to normal.

Alarm

Activates on alarm and remains active until the input has returned to normal and the alarm has been reset to the off state

Audible

Activates on alarm and remains active until the mute or acknowledge pushbutton has been pressed.

Group Relay with Reflash

A common relay can be set to reflash each time a new event occurs within the group to prevent subsequent events being masked by a standing alarm

Pushbutton Follower Relay

Any common relay can be set to follow the action of any pushbutton.

The common relay function should be set to match the required pushbutton i.e. if lamp test is selected the common relay contact will activate in sympathy when the lamp test pushbutton is pressed.

Diagnostic / Watchdog Relay

Any common relay can be set to operate as diagnostic / watchdog relay to provide a volt free contact for use with 3rd party devices to indicate that a fault has occurred within the annunciator.

The following options are available:-

All Faults Monitoring

The common relay will activate when any error is detected within the system

Field Contact Monitoring

If the signal supply used to initiate each alarm channel is lost or the internal signal supply protection fuse has blown the relay will change state and will remain in the abnormal state until power has been restored. In addition the system can provide an indication of line resistance

System Fault Monitoring

If a system fault is detected within the unit the relay will change state and will remain in the abnormal state until the system is functioning correctly.

Communication Failure Monitoring

If the system detects a loss of data on the communication link the relay will change state and will remain in the abnormal state until communications are functioning correctly

Power Failure Monitoring

If the 24VDC logic power fed to the annunciator is lost or the internal logic supply protection fuse has blown the relay will change state and will remain in the abnormal state until power has been restored.

Card Fault Monitoring

If any of the cards within the system are not functioning correctly the relay will change state and will remain in the abnormal state until the card functions correctly.

Ground Fault Monitoring

If the optional ground fault monitoring card is fitted the common relay will change state whenever a ground fault is detected and will remain in the abnormal state until the ground fault has been cleared.

LED Failure Monitoring

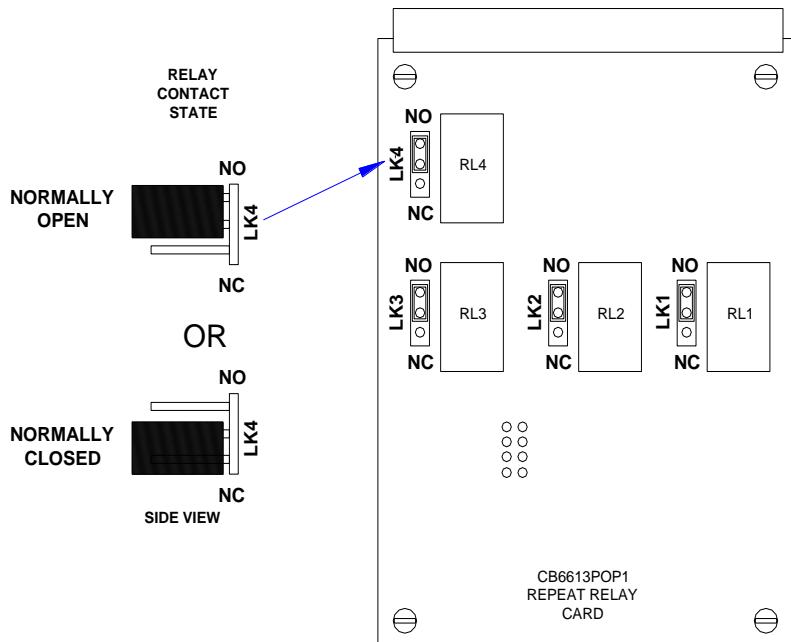
If any window suffers a total failure of the LED assemblies the common relay will change state and will remain in the abnormal state until illumination is restored. (Please note:- The system checks for LED failure on an hourly basis)

GPS Monitoring

On systems supplied with optional time stamping and GPS time sync. the common relay will activate if the GPS time sync. is not available.

Printer Fault Monitoring

On systems supplied with optional time stamping and online printing of alarms the common relay will change state when any printer errors occur and will remain in the abnormal state until the printer error has been resolved.


Real Time Clock Fault Monitoring

The common relay will change state if any faults are detected in the RTC and will remain in the abnormal state until the RTC returns to normal.

SECTION 7- INDIVIDUAL CHANNEL REPEAT RELAYS

Each four channel alarm card can be supplied with an optional four channel relay card, part no CB6613POP1, which plugs into the four channel alarm card and provides the user with a volt-free contact per alarm channel for use with 3rd Party devices.

Each relay is equipped with a C/O contact and the user can select the contact state to N/C or N/O using a 3 way header and 2 way shorting bar located on the card as shown below

Each relay can be configured in software to operate in accordance with one of the following:-

Input Follower

The relay changes state each time there is a change to the associated signal input contact.

Logic Follower

The relay changes state on alarm and remains in the abnormal state until the input has returned to normal and the logic has been reset using the pushbuttons associated with the ISA sequence set for this channel.

Display Follower

The relay changes state on alarm and faithfully follows the display window i.e. Flashing, Steady or Off depending on the alarm sequence selected for this channel.

Cancel System Test Relay

On systems supplied after February 1st 2010 using configuration software version 2.0.5 or higher the user is able to prevent the individual channel repeat relays operating when the system test pushbutton is pressed.

This feature was previously only available in “View in Advance” mode

This feature is selectable under the sequence tab as shown below and is selectable on a global basis i.e. individual channel repeat relays can be set to operate on system test or can be prevented from operating when system test is pressed.

In the example below the repeat relays will not operate during system test.

Dual Repeat Relays

If Dual Repeat Relay outputs are required two channel alarm cards are used with the optional four channel relay card and the card defaults to:-

- Channel 1 providing outputs on relay R1 and relay R2
- Channel 2 providing outputs on relay R3 and relay R4

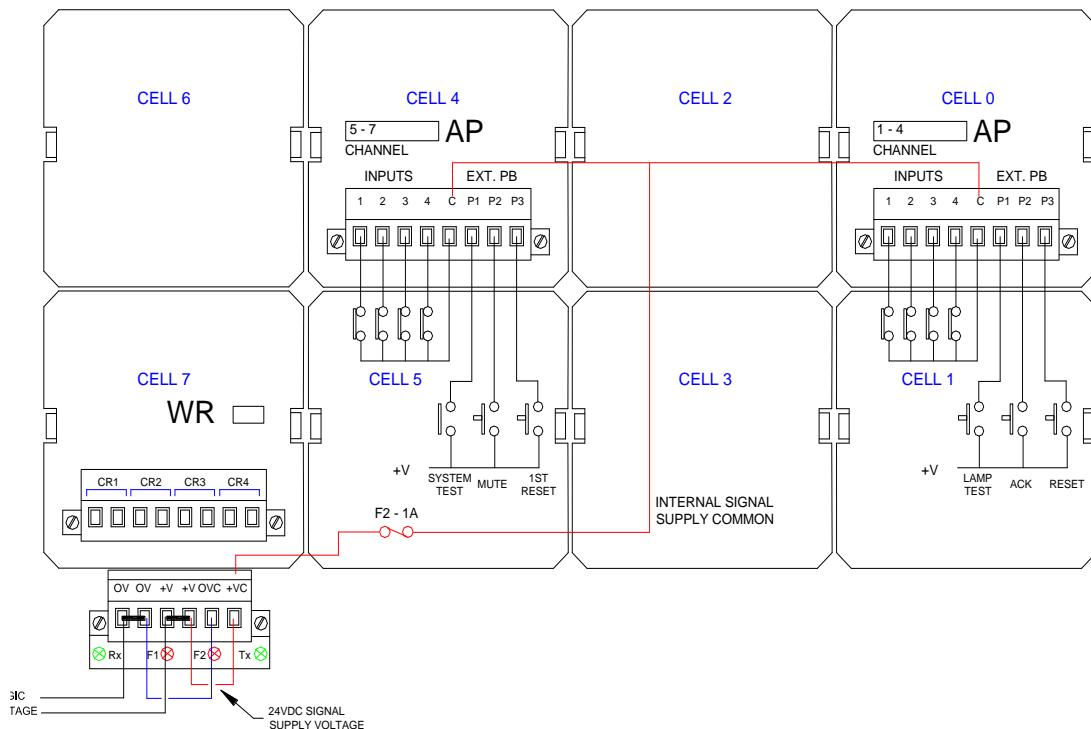
Last Card in the System

If the number of alarms in the annunciator means the last alarm card is not fully utilised the spare relays are automatically assigned as follows

On systems which use two channels, the card defaults to:-

- Channel 1 providing outputs on relay R1 and relay R2
- Channel 2 providing outputs on relay R3 and relay R4

On systems which use 1 channel, the card defaults to:


- Channel providing outputs on relay, R1, R2, R3 and R4

Each relay is equipped with a C/O contact and the user can select the contact state to N/C or N/O using a 3 way header and 2 way shorting bar located on the relay card.

SECTION 8 - TYPICAL 725B REAR VIEWS

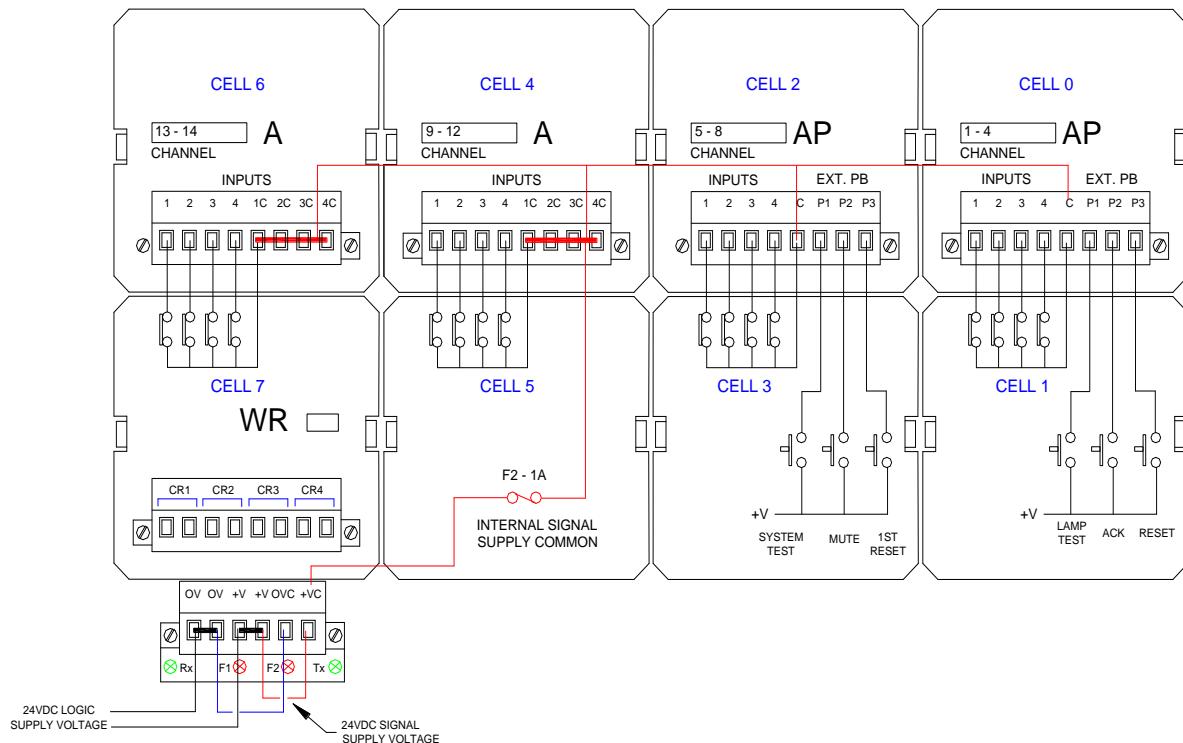
The following details are provided as typical examples of 725B Announcer rear views showing alarm inputs, remote pushbutton inputs, common alarm relay outputs, 24VDC logic and signal wiring

Typical Large Window Version,
(each alarm window = 60mm w x 60mm h)

The above rear view shows a typical large window 725B announcer 4 cells wide x 2 cells high with seven active alarms, common relay card and an integral pushbutton module.

Each cell within the Announcer is used to display a single channel.

In the example above cell 0 and cell 4 are equipped with a four channel alarm card plus provision for three remote pushbutton inputs. As standard the pushbutton inputs are software configured as follows:-


Cell 0 ---- **P1** = Lamp Test / **P2** = Ack / **P3** = Reset

Cell 4 ---- **P1** = System Test / **P2** = Silence / **P3** = 1st Reset

These can be reconfigured in software as required.

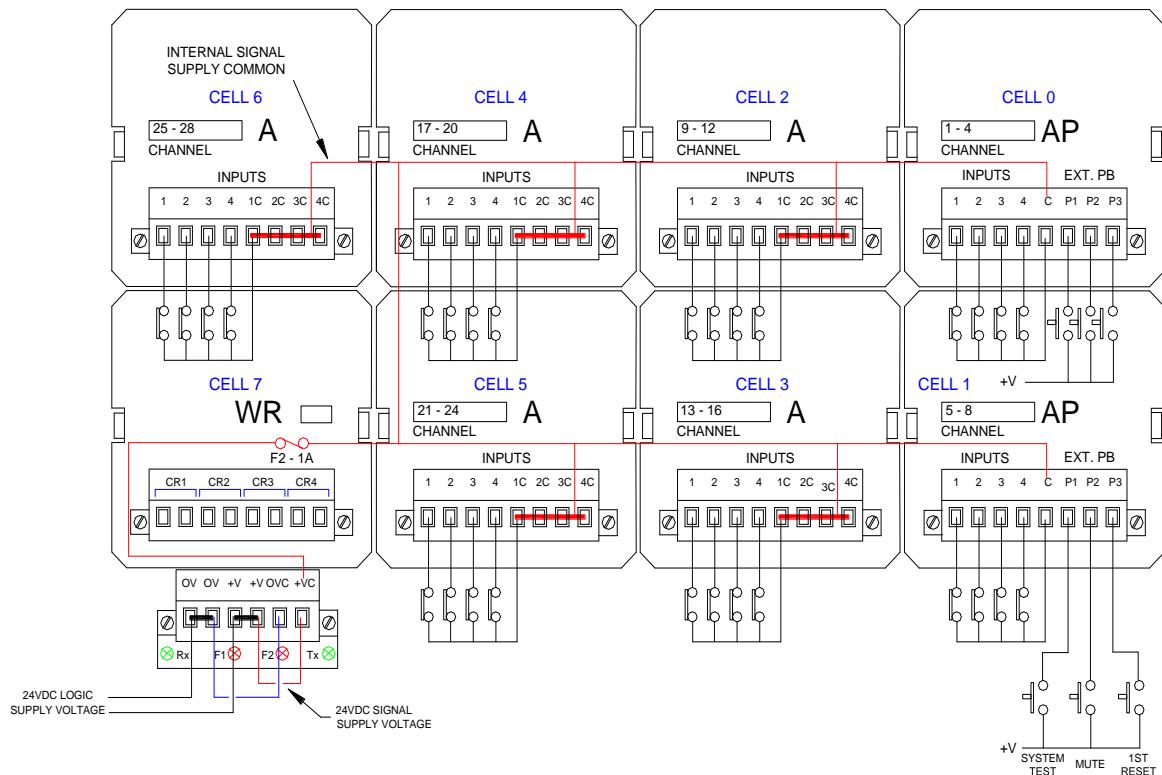
In large window versions of the 725B only the first cell in a group of four is supplied with an alarm card and the outputs are distributed to the next three cells – working down in columns then moving onto the next row.

Typical Medium Window Version,
(each alarm window = 60mm w x 30mm h),

The above rear view shows a typical medium window 725B configured 4 cells wide x 2 cells high with fourteen active alarms, common relay card and an integral pushbutton module.

Each cell within the Annunciator is used to display two alarm channels.

In the example above cell 0 and cell 2 are equipped with a four channel alarm card plus provision for three remote pushbutton inputs. As standard the pushbutton inputs are software configured as follows:-


Cell 0 ---- **P1** = Lamp Test / **P2** = Ack / **P3** = Reset

Cell 2 ---- **P1** = System Test / **P2** = Silence / **P3** = 1st Reset

These can be reconfigured in software as required.

In medium window versions of the 725B only the first cell in a group of two is supplied with an alarm card and the outputs are distributed to the next cell – working down in columns and then moving onto the next row.

Typical Small Window Version, (each alarm window = 30mm w x 30mm h),

The above rear view shows a typical small window 725B configured 4 cells wide x 2 cells high with twenty eight active alarms, common relay card and an integral pushbutton module.

Each cell within the Annunciator is used to display four alarm channels.

In the example above cell 0 and cell 1 are equipped with a four channel alarm card plus provision for three remote pushbutton inputs. As standard the pushbutton inputs are software configured as follows:-

Cell 0 ---- **P1** = Lamp Test / **P2** = Ack / **P3** = Reset

Cell 1 ---- **P1** = System Test / **P2** = Silence / **P3** = 1st Reset

These can be reconfigured in software as required.

In small window versions of the 725B each cell is supplied with an alarm card and the outputs are distributed to four channels within the cell.

SECTION 9 - INSTALLATION

Unpacking

Once the item has been unpacked please visually examine the unit for any signs of transit damage before installing the unit into the control system. If any damage has occurred please report the damage to the freight forwarder and copy RTK. The alarm annunciator is supplied with panel mounting clamps locked in place, however please check all packages to ensure that no additional pieces are left in the box as any auxillary items like power supplies, horns, pushbuttons or spares kits will be packed separately.

Please double check that all items listed on the packing list have been unpacked before disposing of any packing material.

Mounting

Standard 725B units are designed for panel mounting, as an option they can be supplied fitted within 19" filler plates to allow direct mounting into Industry standard 19" rack systems or fully integrated into wall or floor standing panels.

Panel Mounting

CABINET DIMENSIONS IN MM					
WIDE			HIGH		
Cells	Overall	Cut-Out	Cells	Overall	Cut-Out
1	88	74	X	1	88
2	148	134		2	148
3	208	194		3	208
4	268	254		4	268
5	328	314		5	328
6	388	374		6	388
7	448	434		7	448
8	508	494		8	508
9	568	554		9	568
10	628	614		10	628
11	688	674		11	688
12	748	734		12	748
13	808	794		13	808
14	868	854		14	868
15	928	914		15	928
16	988	974		16	988

Please note:-

The cut out tolerance should be with $\pm 2\text{mm}$.

Annunciator depth is 143mm

Caution

The above table indicates the dimensions based on the number of **cells** high and wide this should not be confused with the number of alarm windows.

The number of windows available per cell is determined by the window style

Window Style	Window Size mm	Alarms PER cell
Large	60 W x 60 H	1
Medium	60 W x 30 H	2
Small	30 W x 30 H	4

19" Rack Mounting

725B Alarm Annunciators are suitable for mounting within 19" racks using suitable filler plates which can be supplied as optional items.

Units from 1 to 7 cells wide are possible within the 19" rack dimensional limits

The number of cells high is dependant on the available space available within the 19" rack.

Wall Mounting

RTK offer a full integration service where Panel mounted Annunciators are supplied within an industry standard Wall mounting Enclosure, with all customer connections typically wired to Weidmuller terminals for ease of connection to the field device.

Floor Standing

RTK offer a full integration service where Panel mounted Annunciators are supplied within an industry standard Floor Standing Enclosures, with all customer connections typically wired to Weidmuller terminals for ease of connection to the field device.

SECTION 10- SPECIFICATIONS

Logic power

24VDC (19 – 28VDC)

Power Supplies

1. Integral power supplies

Universal Input Type capable of accepting
85 – 264VAC OR
88 – 360VDC

Each power supply can power up to 40 small windows, 20 medium windows or 10 large windows.

2. Multiple integral power supplies

In larger systems multiple integral power supplies can be used

3. Remote power supplies

RTK offer a complete range of remote mounting AC/DC OR DC/DC power supplies in various wattages to suit individual applications and separate data sheets are available for these units.

Redundant power supplies

In safety critical applications integral or remote power supplies can be supplied in redundancy allowing the system to operate from two power sources.

Quiescent current

Each channel requires 20mA in the non alarm state

Alarm state current

The following table details the current required per channel whilst in the alarm state.

Window Size	Small	Medium	Large
Standard systems	40mA	60mA	100mA
Systems with repeat relays	50mA	70mA	110mA
Pushbutton module, common relays & integral audibles			200mA

Signal Inputs

All inputs are provided with optical isolators capable of withstanding a 1000 volts megger test to ground.

The standard unit provides 24VDC as a signal supply voltage and options exist for 24VAC, 48V AC/DC, 125V AC/DC or 250V AC/DC.

Input response time

The user can select the response time required per channel in the range 1ms to 65S using the RTK supplied configuration software.

First-Up discrimination

Better than 10mS

Outputs**Individual channel repeat relays**

As an option each channel within the Annunciator can be supplied with a dedicated repeat relay with SPDT contacts allowing the user to jumper select a N/C or N/O contact for use with 3rd Party devices.

Contact rating

Voltage	Rating (resistive)
24VDC	2A
125VDC	0.5A
125VAC	1A

Common relays

All units are provided with a minimum of four common relays which can be software configured for use as Group, Horn or Watchdog relays. Additional common relays can be supplied as optional extras.

Contact rating

Voltage	Rating (resistive)
24VDC	2A
125VDC	0.5A
125VAC	1A

Audible alarms

Two integrally mounted audible alarms are provided on systems using the integral pushbutton module. Each audible has a unique tone and the configuration software allows the user to adjust the volume and to pulse either audible as required. Common relays can be configured to operate as audible alarms as required.

Communications

Standard 725B units are provided with RS232 Modbus port with RTU or ASCII protocols. Optional protocols such as DNP3 are available

Environmental Specifications**Temperature**

Operating Temperature - 20 to + 60 Degrees C

Storage Temperature - 20 to + 80 Degrees C

Humidity 0 – 95% RH, Non Condensing

Protection

Annunciator front: IP41

Annunciator rear: IP20

Optional covers and Enclosures available for IP54 up to IP67

Radiated RFI Immunity

IEC 61000-4-3

Conducted RFI Immunity

IEC 61000-4-6

Radiated Emissions

IEC 61000-6-3

Conducted Emissions

IEC 61000-6-3

Radiated Power Frequency Magnetic Field

IEC 61000-4-8

ESD Effects

IEC 61000-4-2

Dielectric Withstand

1500V RMS

Surge Withstand – Oscillatory

ANSI C37.90.1

Electrical Fast Transient/Burst Immunity

IEC 61000-4-4

Surge Immunity

IEC 61000-4-5

Approvals

SECTION 11 - SPARE PARTS LIST

Four Channel Alarm Cards

24V / 125V Signal Input Versions

Part No	Description
CB6611POP1	Standard alarm card
CB6611POP3	Alarm card plus three remote pushbutton inputs
CB6611POP5	Alarm card plus sequential event recorder memory
CB6611POP7	Alarm card with three remote pushbutton inputs and sequential event recorder memory

24V / 125V Differential Input Versions

Part No	Description
CB6611POP9	Alarm cards with differential inputs
CB6611POP11	Alarm cards with differential inputs plus sequential event recorder memory

48V / 250V Signal Input Versions

Part No	Description
CB6611POP2	Standard alarm card
CB6611POP4	Alarm card plus three remote pushbutton inputs
CB6611POP6	Alarm card plus sequential event recorder memory
CB6611POP8	Alarm card with three remote pushbutton inputs and sequential event recorder memory

48V / 250V Differential Input Versions

Part No	Description
CB6611POP10	Alarm cards with differential inputs
CB6611POP12	Alarm cards with differential inputs plus sequential event recorder memory

Four Channel Repeat Relay Card

Part No	Description
CB6613POP1	Four Channel Repeat Relay Card

Common Relay Card

Part No	Description
CB6641POP1	Common Relay Card used in WR Cell on systems supplied with integral pushbutton modules
CB6641POP2	Common Relay Card used in WR Cell on systems supplied with remote pushbutton modules

Remote Pushbutton Card

Part No	Description
CB9427POP1	Remote Pushbutton Card

SMR Card

Part No	Description
CB9413POP1	SMR Card

White LED Assembly

Part No	Description
CB7028POP1	“Fit & Forget” White LED Assembly

Integral Power Supply

Part No	Description
CB6617POP1	Integral Universal Input Power Supply Card
CB6617POP2	Integral Universal Input Power Supply Card MOD1

Pushbutton Card

Part No	Description
CB6678POP1	Pushbutton Assembly Spare Card

SI/O Cards (Logic/Signal Power Input Cards)

Part No	Description
CB6648POP1	Standard Power Input Card used with External PSU
CB6648POP2	Standard Power Input Card used with Integral PSU
CB6648POP3	Power Input Card used with External PSU c/w RS485 Communications
CB6648POP4	Power Input Card used with Integral PSU c/w RS485 Communications

SI/O Card (For use with remote Pushbutton Module)

Part No	Description
CB6648POP5	Standard Power Input Card used with External Pushbutton Module version

Ground Detector Card

Part No	Description
CB7042POP	Ground Fault Detector Card

Communication Card

Part No	Description
CB7515POP1	Standard Communication Card
CB10257POP1	Enhanced Comm's Card with IEC61850

Spare Coin Cell Battery

Part No	Description
BA-3V-001	Coin Cell Battery Type CR2032 3V – Standard Comm's
BA-3V-002	Coin Cell Battery Type BR1225 3V – Enhanced Comm's

USB Programming Cable

Part No	Description
725B-USB	USB Programming Cable

Bezels

Part No	Description
ML-7227-L	Bezel for use with 60mm x 60mm Large Windows
ML-7227-M	Bezel for use with 60mm x 30mm Medium Windows
ML-7227-S	Bezel for use with 30mm x 30mm Small Windows

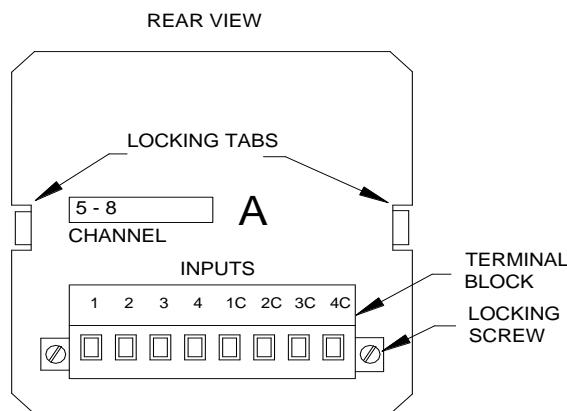
Clear Lens

Part No	Description
ML-7228-L	Lens for use with 60mm x 60mm Large Windows
ML-7228-M	Lens for use with 60mm x 30mm Medium Windows
ML-7228-S	Lens for use with 30mm x 30mm Small Windows

Spares Kits (External Power Supply Version)

Part No	Description
CB7028POP1	White LED Assembly
FU-1A-002	Signal Supply Fuse 5 x 20 mm 1A
FU-8A-003	Logic Supply Fuse 5 x 20 mm 8A

Spares Kits (Internal Power Supply Version)

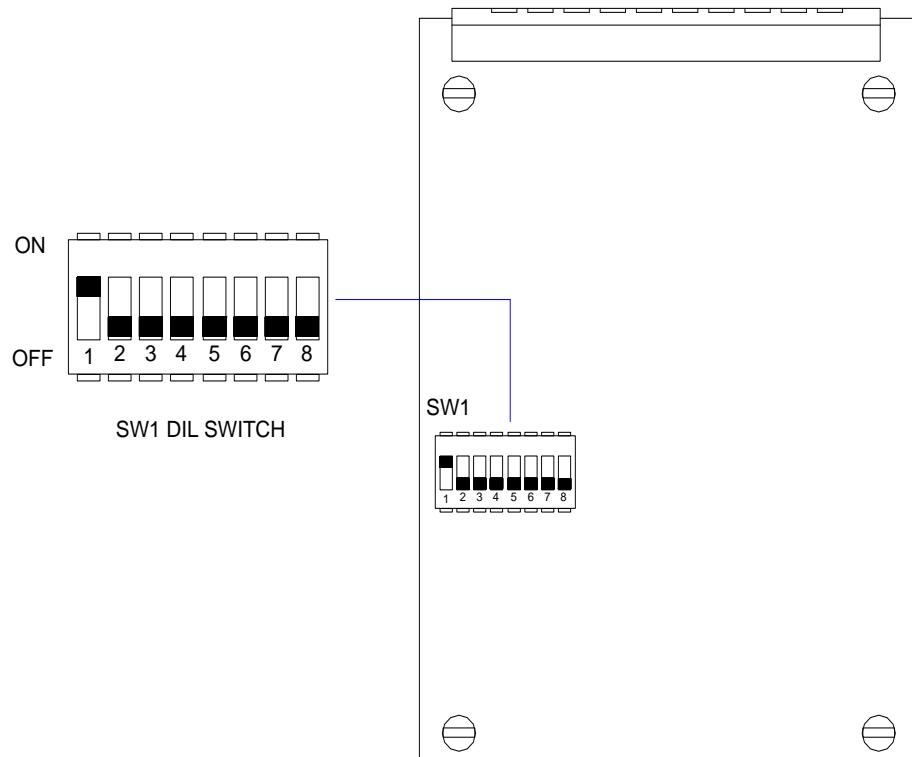

Part No	Description
CB7028POP1	White LED Assembly
FU-1A-002	Signal Supply & 24VDC Output Fuse 5 x 20 mm 1A
FU-2A-003	Primary Supply Fuse 5 x 20 mm 2A

SECTION 12- SERVICING

Module Removal

All of the cards within the 725B are removable from the rear of the instrument

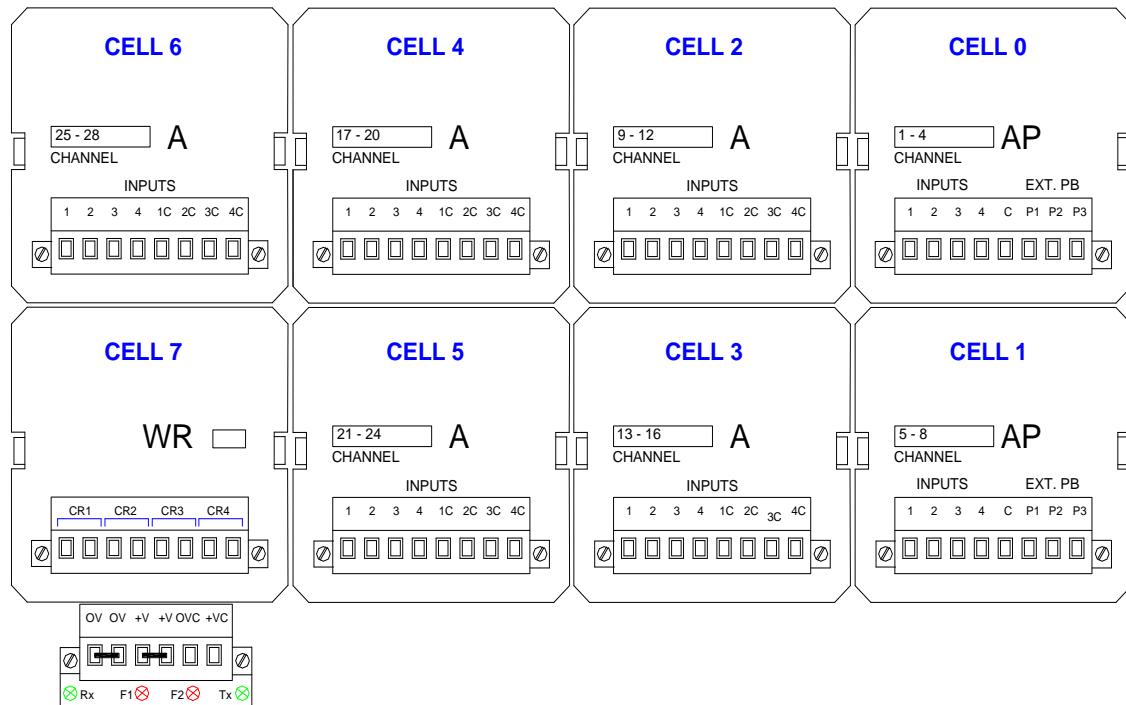
To remove a card we recommend the following procedure:-


1. Isolate the power to the Annunciator.
2. Undo the locking screws on either side of the terminal block on the rear of the cell.
3. Unplug the terminal block, which can be removed with field wiring still attached.
4. The plastic rear cover can be removed using a flat blade screwdriver to release the locking tabs on either side of the cover.
5. Once the rear cover has been removed the associated card can be withdrawn by pulling on the socket.
6. Please note each card in the system has its own unique address and it is important that the user notes the address if removing multiple cards or replacing a card.
7. Once a card has been replaced the plastic cover can be clipped back into position, the terminal block can be re-connected and the screws tightened to lock it in place.

IMPORTANT

8. If a card has been replaced the user will need to download the original software configuration to the unit to ensure that the features of the new card match the original one.

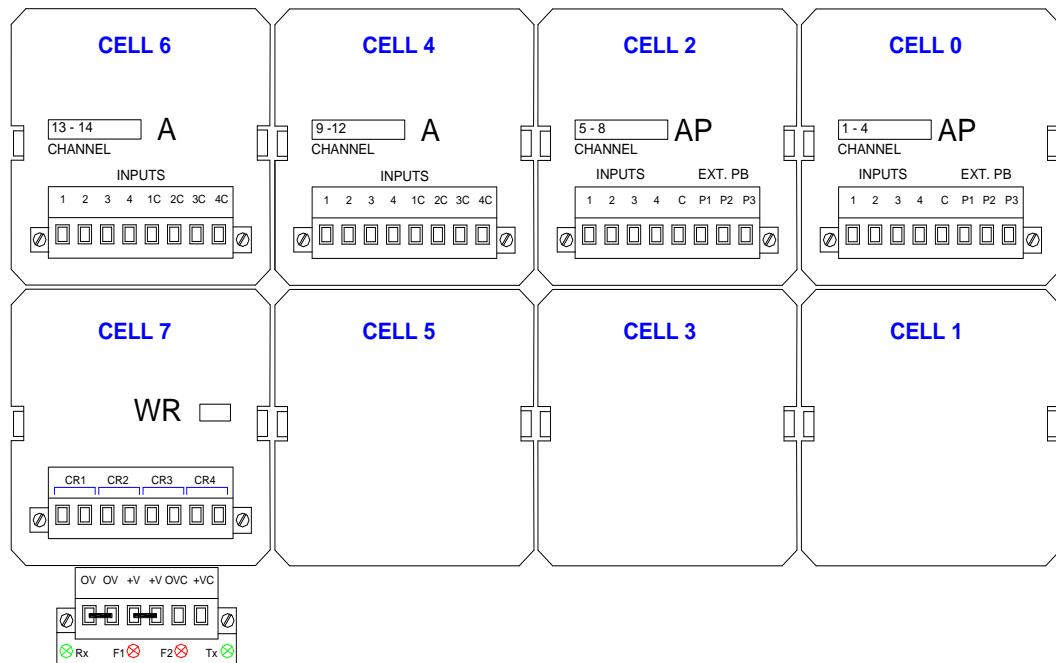
Card Address Setting


Before each card is placed within the annunciator a unique address number is set using the switches located on DIL switch SW1 as shown on a typical alarm card in the diagram below.

The first card in the system, top right hand corner when viewed from the rear, is factory set to Address 0 and the remaining cards require their own unique address for the system to operate correctly. The factory default regarding addressing varies according to window size.

Small Window versions.

In the example shown 7 x four channel alarm cards plus 1 x common relay card would be fitted in the cell positions indicated below:

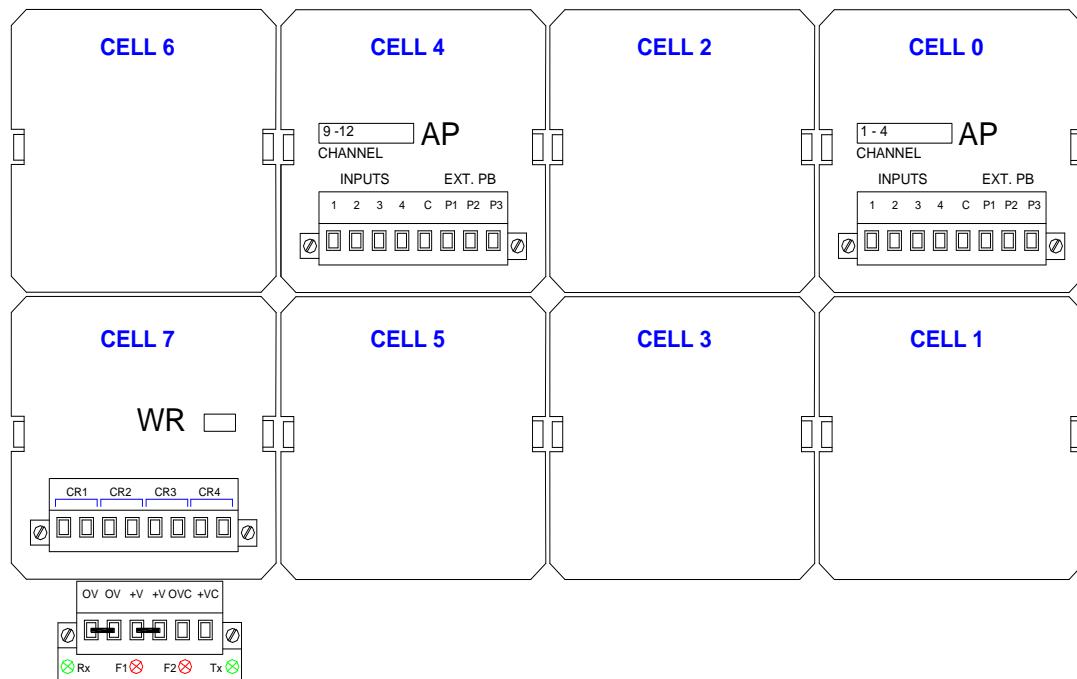

Card	Cell Type	Cell	Address
1	AP	0	0
2	AP	1	1
3	A	2	2
4	A	3	3
5	A	4	4
6	A	5	5
7	A	6	6
8	WR	7	7

DIL switch SW1 on each card in the system should be set to match the Cell number as indicated in the diagram above which shows the rear view of a typical small window 725B Annunciator.

For details on how to set the address please refer to the following page.

Medium Window versions.

In the example shown 4 x four channel alarm cards plus 1 x common relay card would be fitted in the cell positions indicated below:


Card	Cell Type	Cell	Address
1	AP	0	0
2	AP	2	2
3	A	4	4
4	A	6	6
5	WR	7	7

DIL switch SW1 on each card in the system should be set to match the Cell number as indicated in the diagram above which shows the rear view of a typical medium window 725B Annunciator.

For details on how to set the address please refer to the following page.

Large Window versions.

In the example shown 2 x four channel alarm cards plus 1 x common relay card would be fitted in the cell positions indicated below:

Card	Cell Type	Cell	Address
1	AP	0	0
2	AP	4	4
3	WR	7	7

DIL switch SW1 on each card in the system should be set to match the Cell number as indicated in the diagram above which shows the rear view of a typical large window 725B Annunciator.

For details on how to set the address please refer to the following page.

Typical Alarm Card DIL Switch SW1 Address Settings

ADDRESS		128	64	32	16	8	4	2	1
NO.	BINARY	SW1-8	SW1-7	SW1-6	SW1-5	SW1-4	SW1-3	SW1-2	SW1-1
0	00000000	OFF							
1	00000001	OFF	ON						
2	00000010	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
3	00000011	OFF	OFF	OFF	OFF	OFF	OFF	ON	ON
4	00000100	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF
5	00000101	OFF	OFF	OFF	OFF	OFF	ON	OFF	ON
6	00000110	OFF	OFF	OFF	OFF	OFF	ON	ON	OFF
7	00000111	OFF	OFF	OFF	OFF	OFF	ON	ON	ON
8	00001000	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF
9	00001001	OFF	OFF	OFF	OFF	ON	OFF	OFF	ON
10	00001010	OFF	OFF	OFF	OFF	ON	OFF	ON	OFF
11	00001011	OFF	OFF	OFF	OFF	ON	OFF	ON	ON
12	00001100	OFF	OFF	OFF	OFF	ON	ON	OFF	OFF
13	00001101	OFF	OFF	OFF	OFF	ON	ON	OFF	ON
14	00001110	OFF	OFF	OFF	OFF	ON	ON	ON	OFF
15	00001111	OFF	OFF	OFF	OFF	ON	ON	ON	ON
16	00010000	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF
17	00010001	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON
18	00010010	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF
19	00010011	OFF	OFF	OFF	ON	OFF	OFF	ON	ON
20	00010100	OFF	OFF	OFF	ON	OFF	ON	OFF	OFF
21	00010101	OFF	OFF	OFF	ON	OFF	ON	OFF	ON
22	00010110	OFF	OFF	OFF	ON	OFF	ON	ON	OFF
23	00010111	OFF	OFF	OFF	ON	OFF	ON	ON	ON
24	00011000	OFF	OFF	OFF	ON	ON	OFF	OFF	OFF
25	00011001	OFF	OFF	OFF	ON	ON	OFF	OFF	ON
26	00011010	OFF	OFF	OFF	ON	ON	OFF	ON	OFF
27	00011011	OFF	OFF	OFF	ON	ON	OFF	ON	ON
28	00011100	OFF	OFF	OFF	ON	ON	ON	OFF	OFF
29	00011101	OFF	OFF	OFF	ON	ON	ON	OFF	ON
30	00011110	OFF	OFF	OFF	ON	ON	ON	ON	OFF
31	00011111	OFF	OFF	OFF	ON	ON	ON	ON	ON
32	00100000	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
33	00100001	OFF	OFF	ON	OFF	OFF	OFF	OFF	ON
34	00100010	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF
35	00100011	OFF	OFF	ON	OFF	OFF	OFF	ON	ON
36	00100100	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF
37	00100101	OFF	OFF	ON	OFF	OFF	ON	OFF	ON
38	00100110	OFF	OFF	ON	OFF	OFF	ON	ON	OFF
39	00100111	OFF	OFF	ON	OFF	OFF	ON	ON	ON
40	00101000	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF

Address 0 To 40 are shown for reference

A max of 64 addresses are available = 64 x 4 channels per card = 256 channels max in a single annunciator.

SECTION 13 – CONTACT / RETURNS

RTK Instruments Limited
St James Business Park
Knaresborough
North Yorkshire
HG5 8PJ

Telephone / Fax Number List

Telephone: 0044 (0) 1423 580500
Fax: 0044 (0) 1423 580501

Procedures for Factory Repair and Return Warranty

Please refer to the RMA Form on the following page which we request is copied to allow the user to complete the details to request a Returns Materials Authorisation Number.

Once the form has been received by RTK an RMA number will be advised and we request that this number is used on any corresponding paperwork / packing lists.

RTK kindly request that all goods are adequately packed and note that we cannot be held responsible for any transit damage caused by inadequate packing.

RMA FORM

RTK Instruments Limited
St James Business Park,
Knaresborough, North Yorkshire,
England. HG5 8PJ

Telephone: +44 (0)1423 580500
Facsimile: +44 (0)1423 580501
Web: www.rtkinstruments.com
Email: enquiry@rtkinstruments.com

Advance Replacement Tracking No RMA****

To request advance replacements for parts that have been reported faulty during the warranty period please complete the details below.

Customer	
Address	
Contact	
Telephone No	
Fax No	

Items to be Returned

Qty	Part No.	Serial No.	Reported Fault

Note: If the replacement item is different this will be shown on the related sales Order

RTK Commitment

As part of the ongoing service and support to our customers we agree to supply Advance Replacements on the basis that our instruments are used as a critical part of plant control and instrumentation and also in many safety critical applications.

Agreement from the client

As part of the agreement to supply parts as Advance Replacements we also need certain limited commitments from the customer as follows: -

1. The original parts shall be returned, within 30 days of despatch of the advance replacements, to allow our QA / Test department to investigate the reason of failure. If the goods are not received within this period then the user agrees to pay for the advance replacements (and related carriage) in full.
2. If the failure is found to be caused by RTK workmanship or component failure there will be no charge incurred for the materials or the ongoing carriage.
3. If the returned goods are found to have been damaged by incorrect operation or misuse a charge will be incurred to cover the costs of repair, recalibration and carriage costs.
4. If the returned goods are found to have no faults the user agrees to pay a handling, inspection, re-test and carriage charge.

Customer Authorisation Signature:-

Name:-

FAX Back to +44 (0)1423 580501

SECTION 14 – COMMUNICATIONS OPTIONS

Entry Level Versions

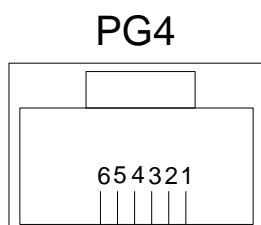
725B annunciators supplied with Entry Level Comm's are provided with the following basic communications protocols:-

Communications Addresses

Each card in the system requires a unique address therefore the first card in any given system is address 1, the second card address 2 etc.

Protocols

- Modbus RTU - Modbus Function 01 and Modbus Function 15 only.
- RTK AMS


NOTE: On 725B annunciators supplied with Entry Level Comm's, after 30th September 2009, Modbus will be order specific and will only be available on alarm cards using software version S09158.

Communication Speed

The user is able to select the baud rate to communicate to 3rd party devices using the drop menu within the configuration software as detailed in Section 13 under the comm's tab. The following baud rates are available as required 38,400, 19,200 or 9,600

Connection Details

An Industry standard RJ11 connector is provided on the XS/FC485 communication card which provides the following connections:-

1. TXa
2. No Connection
3. OV
4. RXb
5. TXb
6. RXa

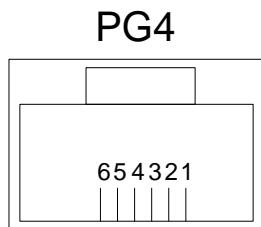
Standard Comm's Version

725B annunciators supplied with standard comm's are provided with 2 ports:

- Port-2 provides an isolated RS485 Port
- Port-4 provides a standard RJ45 Ethernet connection

Serial Ports

725B annunciators supplied with standard comm's are provided with the following communications protocols via Port-1 and Port-2

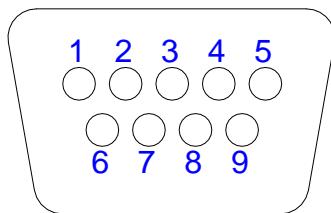

- RTK AMS
- Modbus RTU
- Modbus ASCII
- Wharton Time Sync

Communications Addresses

Each port within the comm's card is provided with a software configurable node address.

Port 1 Connection Details

An Industry standard RJ11 connector is provided on the XS/FC485 communication card which provides the following connections:-



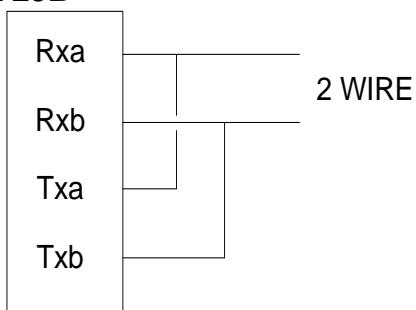
1. TXa
2. No Connection
3. OV
4. RXb
5. TXb
6. RXa

Port 2

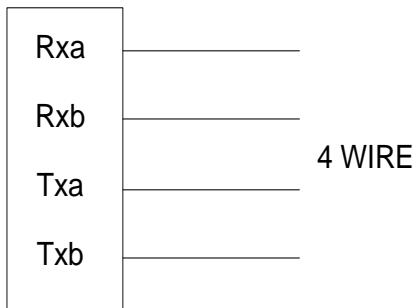
Connection Details

An Industry standard 9-way male d-type connector is provided on the rear of the communication card which provides the following connections:-

- 1 – Sync+
- 2 – RxA
- 3 – TxB
- 4 – Spare
- 5 – GND
- 6 – Sync -
- 7 – RxB
- 8 – TxA
- 9 - Spare


Port 2 gives an isolated RS485 port with the following pin out:

- 1 – Sync+
- 2 – RxA
- 3 – TxB
- 5 – GND
- 6 – Sync -
- 7 – RxB
- 8 – TxA


Port 4 is an Ethernet port which allows connection to an Ethernet network via a standard RJ45 connection.

Typical Connections

725B

725B

Ethernet Ports

725B annunciators supplied with standard comm's are provided with the following communications protocols via Port 4:-

- SNTP (Simple Network Time Protocol) Client

Port 4 Connection Details

Port 4 is an Ethernet port which allows connection to an Ethernet network via a standard RJ45 connection.

Network Address

The IP address, Subnet mask and gateway address are configurable in the configuration software.

For the SNTP protocol the server IP address is configurable in the configuration software.

Enhanced Comm's Version

725B annunciators supplied with Enhanced comm's are provided with an additional Ethernet port with the following Protocols:

- IEC61850 Server

Port 3 Connection Details

Port 3 is an Ethernet port which allows connection to an Ethernet network via a standard RJ45 connection.

Network Address

The IP address, Subnet mask and gateway address are configurable in the configuration software.

Protocols

MODBUS

The tables below show the standard message formats for data interchange, for both ASCII (standard comm's version Only) and RTU protocols.

ASCII tables	Each character represents 7 bit binary data in ASCII format with the exception of the characters in brackets, which should be considered as one character. X represents a character with more than one possible value. All characters are framed with 1 start bit, 1 parity bit and 1 stop bit.
RTU tables.	Each character represents 8 bit binary data in hexadecimal format. Y represents a character with more than one possible value. All characters are framed with 1 start bit, 1 parity bit and 1 stop bit.

Read Request – Master

ASCII	START	ADDRESS	FUNCTION	REGISTER ADDRESS	NO OF REGISTERS	ERROR CHECK	STOP
	:	XX	XX	XXXX	XXXX	XX	[LF] [CR]
RTU	START	ADDRESS	FUNCTION	REGISTER ADDRESS	NO OF REGISTERS	ERROR CHECK	STOP
	ELAPSED TIME 3 ½ CHARACTERS MIN	Y	Y	YY	YY	YY	ELAPSED TIME 3 ½ CHARACTERS MIN

Read Response - Slave

ASCII	START	ADDRESS	FUNCTION	BYTE COUNT	DATA	ERROR CHECK	STOP
	:	XX	XX	XX	XXXX	XX	[LF] [CR]
RTU	START	ADDRESS	FUNCTION	BYTE COUNT	DATA	ERROR CHECK	STOP
	ELAPSED TIME 3 ½ CHARACTERS MIN	Y	Y	Y	YY	YY	ELAPSED TIME 3 ½ CHARACTERS MIN

Single Write Request/Response

Master write request and slave write response, are the same.

ASCII	START	ADDRESS	FUNCTION	REGISTER ADDRESS	DATA	ERROR CHECK	STOP
	:	XX	XX	XXXX	XXXX	XX	[CR] [LF]

RTU	START	ADDRESS	FUNCTION	REGISTER ADDRESS	DATA	ERROR CHECK	STOP
	ELAPSED TIME 3 1/2 CHARACTERS MIN	Y	Y	YY	YY	YY	ELAPSED TIME 3 1/2 CHARACTERS MIN

Multiple Write Request

ASCII	START	ADDRESS	FUNCTION	REGISTER ADDRESS	QUANTITY	BYTE COUNT	DATA	ERROR CHECK	STOP
	:	XX	XX	XXXX	XXXX	XX	XXXX	XX	[CR] [LF]

RTU	START	ADDRESS	FUNCTION	REGISTER ADDRESS	QTY	BYTE COUNT	DATA	ERROR CHECK	STOP
	ELAPSED TIME 3 1/2 CHARS MIN	Y	Y	YY	YY	Y	YY	YY	ELAPSED TIME 3 1/2 CHARS MIN

Multiple Write Response

ASCII	START	ADDRESS	FUNCTION	REGISTER ADDRESS	QUANTITY	ERROR CHECK	STOP
	:	XX	XX	XXXX	XXXX	XX	[CR] [LF]

RTU	START	ADDRESS	FUNCTION	REGISTER ADDRESS	QTY	ERROR CHECK	STOP
	ELAPSED TIME 3 1/2 CHARS MIN	Y	Y	YY	YY	YY	ELAPSED TIME 3 1/2 CHARS MIN

Address

This defines the Node address of the card in the system, range 0-255. On entry level comm's the first card in the system is address 1 and the following cards are consecutively numbered.

Function

Modbus Function No

Error Check

This defines the error checking format required, for RTU this should be set to CRC (Cyclic Redundancy Check), while with ASCII this should be LRC (Longitudinal Redundancy Check).

Modbus Slave – Entry Level

Function Descriptions

This section describes the process of reading from and writing data to a 725B slave annunciator

Read Coil Status – Function 01 – Request

Register Address

This is used to address the “start” channel to be read for example the first channel in the system “channel 1” would be register address 00 00

To read the input read coils 0-3

To read the remote pushbutton inputs on the card read coils 4-6

Number of Registers

This represents the number of coils, (Inputs), the user wishes to read. This can be 1-7 coils.

Read Coil Status – Function 01 – Response

Byte Count

This represents the number of bytes sent

Data

This represents the status of the requested channel

Input

0 = Input Normal

1 = Input Abnormal

Typical Example of Message Format

To read all of the inputs available on the first alarm card in the system the user would need to read 4 digital and 3 remote pushbutton inputs using the following message format

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK
01	01	00 00	00 07	7D C8

To read channel two on the second alarm card in the system you would need the following message format

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK
02	01	00 01	00 01	AC 39

Write Multiple Coils – Function 15 - Request

Register Address

This is used to address the “start” channel (coil) to be written.

The register addresses field contains the address of data within the 725B Slave.

REGISTER ADDRESS	CHANNEL NUMBER
0	1
1	2
2	3
3	4
4	PB1
5	PB2
6	PB3

Note: Address 4-6 are only valid on 4 channel alarm cards equipped with the optional 3 remote pushbutton inputs.

Quantity

This represents the number of coils (Inputs), the user wishes to write to

Byte Count

This represents the number of data bytes sent

Data

This represents the input status of the inputs to be written

0 = Input Normal

1 = Input Abnormal

Write Multiple Coils – Function 15 – Response

Register Address

Number of coils that have been written

Quantity

This represents the number of coils (Inputs), the user wishes to be written

Typical Example of Message Format – Entry Level Comm's

To write to all of the inputs available on the first alarm card in the system the user would need to send the following message

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	ERROR CHECK
01	0F	00 00	00 04	01	0F	7E 92

To write input 3 to the normal state on the second alarm card in the system you would need to send the following message

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	ERROR CHECK
02	0F	00 02	00 01	01	00	17 42

To write the third pushbutton input on alarm card 1 to abnormal you would need to send the following message

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	ERROR CHECK
01	0F	00 06	00 01	01	01	67 57

To write the third pushbutton input on alarm card 1 to normal you would need to send the following message

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	ERROR CHECK
01	0F	00 06	00 01	01	00	A6 97

Note: On systems supplied before 30st July 2010 the input status is OR'd with the actual contact state. If the input is serial only please ensure the contact type is set to Normally Open and no customer wiring is made to the customer terminals located on the rear of the associated cell.

With serial inputs 0 = Input Normal and 1 = Input Abnormal

Modbus Slave – Standard Communications

Function Descriptions

This section describes the process of reading from and writing data to a 725B slave annunciator

Read Coil Status – Function 01 – Request

Register Address

This is used to address the “start” channel to be read for example the first channel in the system “channel 1” would be register address 00 00

To read the port register coil value the port offset is used to define the start address.

To read the current contact or alarm status then the start address is defined by the contact offset.

To read the input status read coils 0- 255

To read the alarm status read coils 300- 555

Number of Registers

This represents the number of coils, the user wishes to read. This can be 1- 255 coils.

Read Coil Status – Function 01 – Response

Byte Count

This represents the number of bytes sent

Data

For the port register this will be the value stored in the address requested. With Contact status this represents the status of the requested coil for type of status requested.

Input

0 = Input Normal

1 = Input Abnormal

Alarm

0 = Alarm Normal

1 = Channel in alarm

Typical Example of Message Format

To read all of the inputs available on a 100 way annunciator with a node address of 5 using the following message format

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK
05	01	00 00	00 64	3C 65

ASCII

:	ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK	CR	LF
3A	30 35	30 31	30 30 30 30	30 30 36 34	39 36	0D	0A

Read Status – Function 03 – Request

Register Address

This is used to address the “start” channel to be read for example the first channel in the system “channel 1” would be register address 00 00

To read the port register value the port offset is used to define the start address.

To read the contact, alarm or pushbutton status then the start address is defined by the channel status offset.

If an offset has been set then this would offset the default start register. For input status read register 0-255 with register 0 being Channel 1.

For alarm status read register 300-555 with register 300 being Channel 1.

For PB group status use the following registers:

Pushbutton	Register Address
Lamp Test	256
Acknowledge	257
Reset	258
Mute	259
System Test	260
First Reset	261
Lamp test Audible	262
Sleep	263
Inhibit	264
Unattended	265
Auto Ack Disable	266

Number of Registers

This represents the number of Registers requested(read) this can be up to 125 register at once.

Read Status – Function 03 – Response

Byte Count

This represents the number of bytes sent

Data

This represents the status of the requested register

Port Register

This will the value last written in the register requested, included any masked bits that have been ignored.

Input

0 = Input Normal

1 = Input Abnormal

Alarm

64	Alarm Event return to normal
65	Subsequent Alarm Event activated
66	First-up Alarm Event activated
67	Subsequent Alarm Event Acknowledged
68	First-up Alarm Event Acknowledged
69	Alarm Event Ring-back

Pushbutton

Value represents group status, 0 = PB Deactivate, 1= PB Active

Bit 0	Pushbutton Group 1
Bit 1	Pushbutton Group 2
Bit 2	Pushbutton Group 3
Bit 3	Pushbutton Group 4
Bit 4	Pushbutton Group 5
Bit 5	Pushbutton Group 6
Bit 6	Pushbutton Group 7
Bit 7	Pushbutton Group 8

NOTE: As the register status is polled all none latching pushbutton operations will be latched into the register until the register value is read. i.e. Acknowledge, reset etc

Typical Example of Message Format

To read all of the inputs on a 28 way annunciator on node 9 the user would use the following message format

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK
09	03	00 00	00 1C	45 4B

ASCII

:	ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK	CR	LF
3A	30 39	30 33	30 30 30 30	30 30 31 43	44 38	0D	0A

To read the alarm status of channel 2 on node 255 the user would use the following message format

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK
FF	03	01 2D	00 01	00 21

ASCII

:	ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK	CR	LF
3A	46 46	30 33	30 31 32 44	30 30 30 31	43 46	0D	0A

To read the acknowledge pushbutton status of annunciator node 1 the user would use the following message format

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK
01	03	01 01	00 01	D4 36

ASCII

:	ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK	CR	LF
3A	30 31	30 33	30 31 30 31	30 30 30 31	46 39	0D	0A

Write Single Register – Function 6 - Request

Register Address

This is used to address the “start” register to be written to the port.

If the port register offset has been set then this would offset the default start register.

To write to the input write to registers 0 -255, with register 0 being channel 1 unless mapping has been enabled then this will be defined in the mapping spreadsheet.

For PB group status use the following registers:

Pushbutton	Register Address
Lamp Test	256
Acknowledge	257
Reset	258
Mute	259
System Test	260
First Reset	261
Lamp test Audible	262
Sleep	263
Inhibit	264
Unattended	265
Auto Ack Disable	266

Data

Inputs

This represents the status of the inputs to be written:

Channel set to Normally Open

Value AND'd with register mask is not equal to register mask – Input Normal

Value AND'd with register mask equal to register mask – Input Abnormal

Channel set to Normally Closed

Value AND'd with register mask not equal to register mask – Input Abnormal

Value AND'd with register mask equal to register mask – Input Normal

Pushbutton

To write the pushbutton group status, write 0 = PB Deactivate, 1= PB Active

Bit 0	Pushbutton Group 1
Bit 1	Pushbutton Group 2
Bit 2	Pushbutton Group 3
Bit 3	Pushbutton Group 4
Bit 4	Pushbutton Group 5
Bit 5	Pushbutton Group 6
Bit 6	Pushbutton Group 7
Bit 7	Pushbutton Group 8

Write Single Register – Function 6 – Response

Register Address

The address of the register that has been written.

Data

This represents the data that has been written to the register.

Typical Example of Message Format

To write the input abnormal on channel 1 on node 1 the user would use the following message format

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	DATA	ERROR CHECK
01	06	00 00	00 01	48 0A

ASCII

:	ADDRESS	FUNCTION	REGISTER ADDRESS	DATA	ERROR CHECK	CR	LF
3A	30 31	30 36	30 30 30 30	30 30 30 31	46 38	0D	0A

To write the acknowledge group 1 pushbutton of node 1 the user would use the following message format

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	DATA	ERROR CHECK
01	06	01 01	00 01	18 36

ASCII

:	ADDRESS	FUNCTION	REGISTER ADDRESS	DATA	ERROR CHECK	CR	LF
3A	30 31	30 36	30 31 30 31	30 30 30 31	46 36	0D	0A

Note: On systems supplied before 1st Jan 2012 the input status is OR'd with the actual contact state. If the input is serial only please ensure the contact type is set to Normally Open and no customer wiring is made to the customer terminals located on the rear of the associated cell.

With serial inputs 0 = Input Normal and 1 = Input Abnormal

Write Multiple Coils – Function 15 - Request

Register Address

This register is used to address the first coil to be written. If the port register offset has been set then this would offset the default start register. To write the input status write to coils 0 -255 with coil 0 being channel 1 unless mapping has been enabled then this will be defined in the mapping spreadsheet.

Quantity

This represents the number of coils the user wishes to write to

Byte Count

This represents the number of data bytes sent

Data

This represents the status of the coil to be written

0 = Input Normal

1 = Input Abnormal

Write Multiple Coils – Function 15 – Response

Register Address

Number of coils that have been written

Quantity

This represents the number of coils the user wishes to be written

Typical Example of Message Format

To write all the inputs abnormal on a 20 way annunciator at node 1 the user would need to send the following message

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	DATA	DATA	ERROR CHECK
01	0F	00 00	00 14	03	FF	FF	0F	61 B1

ASCII

:	ADD	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	DATA	DATA	ERROR CHECK	CR	LF
3A	30 31	30 46	30 30 30 30	30 30 31 34	30 33	46 46	46 46	30 46	43 43	0D	0A

Write Multiple Registers – Function 16 - Request

Register Address

This is used to address the “start” register to be written.

If the port register offset has been set then this would offset the default start register.

To write the input status write to registers 0 -255, with register 0 being channel 1 unless mapping has been enabled then this will be defined in the mapping spreadsheet.

For PB group status use the following registers:

Pushbutton	Register Address
Lamp Test	256
Acknowledge	257
Reset	258
Mute	259
System Test	260
First Reset	261
Lamp test Audible	262
Sleep	263
Inhibit	264
Unattended	265
Auto Ack Disable	266

Quantity

This represents the number of registers the user wishes to write to

Byte Count

This represents the number of data bytes sent

Data

Inputs

This represents the status of the inputs to be written:

Channel set to Normally Open

Value AND'd with register mask not equal to register mask – Input Normal

Value AND'd with register mask equal to register mask – Input Abnormal

Channel set to Normally Closed

Value AND'd with register mask not equal to register mask – Input Abnormal

Value AND'd with register mask equal to register mask – Input Normal

Pushbutton

To write the pushbutton group status, write 0 = PB Deactivate, 1= PB Active

Bit 0	Pushbutton Group 1
Bit 1	Pushbutton Group 2
Bit 2	Pushbutton Group 3

Bit 3	Pushbutton Group 4
Bit 4	Pushbutton Group 5
Bit 5	Pushbutton Group 6
Bit 6	Pushbutton Group 7
Bit 7	Pushbutton Group 8

Write Multiple Registers – Function 16 – Response

Register Address

Number of coils that have been written

Quantity

This represents the number of registers the user wishes to be written

Typical Example of Message Format

To write channel 10 abnormal on a 20 way annunciator at node 1 the user would need to send the following message

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	ERROR CHECK
01	10	00 0A	00 01	02	00 01	67 3A

ASCII

:	ADD	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	ERROR CHECK	CR	LF
3A	30 31	31 30	30 30 30 41	30 30 30 31	30 32	30 30 30 31	45 31	0D	0A

To write Reset group 1 PB to the abnormal state on an annunciator at node 2 in the system you would need to send the following message

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	ERROR CHECK
02	10	01 02	00 01	02	00 01	62 42

ASCII

:	ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	BYTE COUNT	DATA	ERROR CHECK	CR	LF
3A	30 32	31 30	30 31 30 32	30 30 30 31	30 32	30 30 30 31	45 37	0D	0A

Note: On systems supplied before 30st July 2010 the input status is OR'd with the actual contact state. If the input is serial only please ensure the contact type is set to Normally Open and no customer wiring is made to the customer terminals located on the rear of the associated cell.

With serial inputs 0 = Input Normal and 1 = Input Abnormal

Modbus Master – Standard Communications

Function Descriptions

This section describes the process of receiving messages from a 725B master annunciator

Read Coil Status – Function 01 – Request

Register Address

This is used to address the “start” coil to be read from the slave device

Number of Registers

This represents the number of slave coils the P725B wishes to read.

Read Coil Status – Function 01 – Response

Byte Count

This represents the number of bytes sent

Data

The data read from the slave device needs to be a valid value to operate the input.

If Channel set to Normally Open

Coil = 0 – Input Normal

Coil = 1 – Input Abnormal

If Channel set to Normally Closed

Coil = 0 – Input Abnormal

Coil = 1 – Input Normal

Typical Request Message Format Example

To read 100 coils from a slave with node address of 5 using the following message format

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK
05	01	00 00	00 64	3C 65

ASCII

:	ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK	CR	LF
3A	30 35	30 31	30 30 30 30	30 30 36 34	39 36	0D	0A

Read Status – Function 03 – Request

Register Address

This is used to address the “start” register to be read from the slave device

Number of Registers

This represents the number of registers to be read from the slave device this can be up to 125 register at once.

Read Status – Function 03 – Response

Byte Count

This represents the number of bytes sent

Data

The data read from the slave device needs to be a valid value to operate the input.

If Channel set to Normally Open

Value AND'd with register mask not equal to register mask – Input Normal

Value AND'd with register mask equal to register mask – Input Abnormal

If Channel set to Normally Closed

Value AND'd with register mask not equal to register mask – Input Abnormal

Value AND'd with register mask equal to register mask – Input Normal

Typical Request Message Format Example

To read 28 registers on slave with node 9 the user would use the following message format

RTU

ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK
09	03	00 00	00 1C	45 4B

ASCII

:	ADDRESS	FUNCTION	REGISTER ADDRESS	No Of REGISTERS	ERROR CHECK	CR	LF
3A	30 39	30 33	30 30 30 30	30 30 31 43	44 38	0D	0A

RTK AMS

When used with the optional Indicium RTK Alarm Management System the user needs to set the protocol to RTK AMS Slave Protocol in the drop down menu for communication to be established between the 725B and the associated PC based Indicium software.

For more details on how to set up Indicium for use with 725B annunciators please refer to the separate Indicium operating & instruction manual.

Wharton Format

The 725B comm's card can be connected to the Wharton 4850 and 4860 time sync unit which can be used to synchronise the clock on the 725B with GPS.

The Wharton unit uses Wharton Format 1 message to send the time to the 725B every second. It then uses the Sync input to synchronise the unit to millisecond accuracy.

For this the comm's card need to be set for sync pulse to external Falling Edge.

The connections between the Wharton Unit and the 725B are:

Wharton RS485 S1	725B
1(PPS)	+ Sync
5(Gnd)	- Sync
8(A)	TxA, RxA
9(B)	TxB, RxB

Mapping

Mapping is configured using the mapping spreadsheet. The spreadsheet is used to map port data to channels and also to setup the Modbus master block requests.

Global Settings

	A	B	C	
1				
2				
3	GLOBAL SETTINGS			
4	PROTOCOL MODE			
5	MAPPING SOURCE			
6	MAPPING TYPE			
7	PORT BIT MASK ABNORMAL			
8	PORT REG OFFSET			
9	CONTACT REG OFFSET			
10	PORT NUMBER			
11				
12				
13	LIMITS			
14	MAPPING TYPES			
15	MAX CHANNEL			
16	MAX MASTER DATA BLOCKS			
17				
18	KEY			
19	U	Undefined		
20				
21				

The Global settings worksheet shows the global setting configured on the unit when the mapping has been exported.

The spreadsheet has 4 additional sheets. Only the sheet related to the port setting requires to be completed.

Master Reg – If the port is set for Master and data source is registers.

Master Coil – If the port is set for Master and data source is coil.

Slave Reg – If the port is set for Slave and data source is registers.

Slave Coil – If the port is set for Slave and data source is coil.

NOTE: Slave protocol only requires the output columns to be completed, the source is for customers reference only.

Setting up master data blocks (Master protocol only)

In columns A and B (Source) the slave device node address and register addresses can be entered. This can be one continuous block or if more than one slave device is used up to 16 devices can be set up.

The P725B expects each block to be continuous, any unused block addresses must be filled in with an unused “u” symbol.

Extensive use of the unused indication is to be avoided since it will consume valuable mapping resource. This can be done by using multiple master blocks within the same node.

Block = Slave node with a range of internal addresses

The example below shows one block with gaps.

A	B	C	D	E	F
1	CUSTOMER REMOTE UNITS		RTK Product Type: 725B		
2			Serial No.: 0		
3	Name: Plant Name				
4	SOURCE			OUTPUT	
5	NODE	ADDRESS	CELL / CARD	CHANNEL	
6	1	40001	0	0	
7	1	40002	0	1	
8	1	40003	0	2	
9	1	40004	0	3	
10	1	40005	2	0	
11	1	40006	2	1	
12	1	40007	u	u	
13	1	40008	u	u	
14	1	40009	2	2	
15	1	40010	2	3	
16					

1st block has node address 1, start register 40001 and 10 registers with registers 40007 and 40008 unused.

This will use 2 mapped points as the final 2 channels are no longer one to one.

The example below shows the same data addresses split over two blocks.

A	B	C	D	E	F
1	CUSTOMER REMOTE UNITS		RTK Product Type: 725B		
2			Serial No.: 0		
3	Name: Plant Name				
4	SOURCE			OUTPUT	
5	NODE	ADDRESS	CELL / CARD	CHANNEL	
6	1	40001	0	0	
7	1	40002	0	1	
8	1	40003	0	2	
9	1	40004	0	3	
10	1	40005	2	0	
11	1	40006	2	1	
12	1	40009	2	2	
13	1	40010	2	3	
14					

1st block has node address 1, start register 40001 and 6 registers

2nd Block has node address 1, start register 40009 and 2 registers

This uses no mapped points.

The example below shows 3 separate blocks with one block with gaps.

	A	B	C	D	E
1	CUSTOMER REMOTE UNITS			RTK Product Type: 725B	
2				Serial No.: 0	
3				Name: Plant Name	
4	SOURCE		OUTPUT		
5	NODE	ADDRESS		CELL / CARD	CHANNEL
6	1	40001		0	0
7	1	40002		0	1
8	1	40003		0	2
9	1	40004		0	3
10	1	40005		1	0
11	1	40006		1	1
12	1	40007		1	2
13	1	40008		1	3
14	2	40001		2	0
15	2	40002		2	1
16	2	40003		2	2
17	2	40004		2	3
18	2	40005		3	0
19	2	40006		3	1
20	2	40007		3	2
21	2	40008		3	3
22	3	40001		4	0
23	3	40002		4	1
24	3	40003		4	2
25	3	40004		4	3
26	3	40005	u	u	
27	3	40006	u	u	
28	3	40007	5	0	
29	3	40008	5	1	
30	3	40009	5	2	
31	3	40010	5	3	
32	3	40011	6	0	
33	3	40012	6	1	
34	3	40013	u	u	
35	3	40014	6	2	
36	3	40015	6	3	
37					

First block has node address 1, start register 40001 and 8 registers

2nd Block has node address 2, start register 40001 and 8 registers

3rd block has node address 3, start address 40001 and 15 registers with registers 40005, 40006 and 400013 unused.

One to one Mapping

CUSTOMER REMOTE UNITS					
1	CUSTOMER REMOTE UNITS		RTK Product Type: 725B		
2			Serial No.: 0		
3			Name: Plant Name		
4	SOURCE		OUTPUT		
5	NODE	ADDRESS	CELL / CARD	CHANNEL	
6	1	40001	0	0	
7	1	40002	0	1	
8	1	40003	0	2	
9	1	40004	0	3	
10	1	40005	1	0	
11	1	40006	1	1	
12	1	40007	1	2	
13	1	40008	1	3	
14					
15					

If one to one mapping is required the spreadsheet is still required to set-up the master node address, Start address and number of registers. The output can then be entered in channel order to configure the one to one mapping.

Alternatively if the user sets mapped port to None in the mapping tab the unit will default to one to one on all ports.

Note: Any gaps in the annunciator cells must be repeated in the spreadsheet, so only valid cells are shown. For example with medium windows every other cell is used. i.e. Cell 0, Cell 2, cell 4 ect.

Many to one Mapping

Many registers/coils can be mapped to the same channel on the annunciator. They will be OR'd together so the channel will show the OR'd sum of all the mapped sources. The Reflash sequence on the channel can be used to reflash the alarm window if any of the source data changes state.

	A	B	C	D	E
1	CUSTOMER REMOTE UNITS		RTK Product Type: 725B		
2			Serial No.: 0		
3				Name: Plant Name	
4	SOURCE		OUTPUT		
5	NODE	ADDRESS	CELL / CARD	CHANNEL	
6	1	0		0	0
7	1	1		0	0
8	1	2		0	0
9	1	3		0	0
10	1	4		0	1
11	1	5		0	1
12	1	6		0	1
13	1	7		0	1
14					
15					
16					

In this example addresses 0, 1, 2 and 3 are OR'd to cell 0 channel 0 and addresses 4, 5, 6 and 7 are OR'd to cell 0 channel 1.

One to many Mapping

A register or coil can be mapped to many channels, if the source data changes state all the associated channels will alarm.

	A	B	C	D	E
1	CUSTOMER REMOTE UNITS		RTK Product Type: 725B		
2			Serial No.: 0		
3				Name: Plant Name	
4	SOURCE		OUTPUT		
5	NODE	ADDRESS	CELL / CARD	CHANNEL	
6	1	40001		0	0
7	1	40001		0	1
8	1	40001		0	2
9	1	40002		0	3
10	1	40002		1	0
11	1	40003		1	1
12	1	40003		1	2
13	1	40003		1	3
14					

In this example address 40001 is mapped to cell 0 channels 0, 1 and 2. Address 40002 is mapped to cell 0 channel 3 and cell 1 channel 0. Address 40003 is mapped to cell 1 channels 1, 2 and 3.

Slave Mapping

	A	B	C	D	E	F
1	RTK PORT			RTK Product Type: 725B		
2				Serial No.: 0		
3				Name: Plant Name		
4	DATA ADDRESS			OUTPUT		
5				CELL / CARD	CHANNEL	
6	0			0	0	
7	1			0	1	
8	2			0	2	
9	3			0	3	
10	4			1	0	
11	5			1	1	
12						

The slave spreadsheet allow the Port register to be mapped to the required channel. This work in the same way as the Master but columns A and B show the P725B port register addresses.

Mapping Limits

On the P725B the number of mapped points is limited to 656, this only includes mapped points, one to one points are not included in the mapping points.

Each master can have up to 16 request blocks.

If more than one address is mapped to a channel they can only be OR'd together. For the reflash this must be enabled on the individual channel in the sequence tab under advanced settings. The reflash pulse will be approx 500mS.

Note: If the configuration file is saved this doesn't include any port mapping data, this must be saved separately using the export mapping.

IEC61850 Server

The IEC61850 is available on Port 3 and can provide the following data onto the network:

- Input Status
- Alarm Status
- Pushbutton status
- Internal Status
- Disable Status

This data will be time stamped to 1ms and will be available via polling or buffered reporting (RCB's).

NOTE: Each event type must be enabled via the configuration software to make it available on the IEC61850 network.

The P725B can also be configured to allow for the following to be controlled on the annunciator via IEC61850 using Single point control (SPC):

- Inputs
- Pushbuttons

NOTE: Inputs and pushbuttons must be configured as Remote to be controlled via IEC61850

As default the device is loaded a Generic SCL file, which is taken from the ICD file for the device. The default IED name will be P725B.

As default the following configuration will be provided:

BRCB's

- Rep1 - reporting data and quality change of Input dataset
- Rep2 - reporting data and quality change of Internal dataset
- Rep3 - reporting data and quality change of pushbutton dataset
- Rep4 - reporting data and quality change of card_status dataset
- Rep5 - reporting data and quality change of alarm dataset

NOTE: Event type must be enabled in RTK configuration software otherwise no data change will be reported

Datasets

- Internal - All internal status inc quality and timestamp
- Card_Status - All alarm card status inc quality and timestamp
- Pushbuttons - All pushbutton inc quality and timestamp
- Input_Status - All input channels status only
- Inputs - All input status inc quality and timestamp
- Alarms - All alarm status inc quality and timestamp
- Disable - All disable status inc quality and timestamp

Note: if device has more than 100 inputs then these will be split across 2 data sets.

GOOSE

Not enabled as default, as inputs are set to be provided via reporting.

To enable GOOSE add a GCB to the SCL configuration, but note a data object/attribute can only be reported via GOOSE or Reporting.

For full details of the IEC61850 protocol implementation refer to the PICS, MICS, TICS and PIXIT provided with the device.

IP address, subnet mask and gateway can be configured via the RTK configuration software.

The following application notes are available:

- **Updating SCL file in device** - detailing how to update the SCL file on the device and updated the IED reference name.
- **GOOSE subscriber setup** - detailing how to configure the IEC61850 as a GOOSE subscriber, which can be used to control the inputs from an external IED's GOOSE messages. (Binary output data only)

SNTP Client

The SNTP client is available on Port 4 and can be used to synchronise the annunciator with network time.

The IP address, of the Server that will provide the time to the device, can be configured via the configuration software.

When a valid time message is received it can take up to 30 seconds for the device to fully synchronise all the cards in the unit.

To determine the SNTP message is valid the client checks the following fields in the SNTP data:

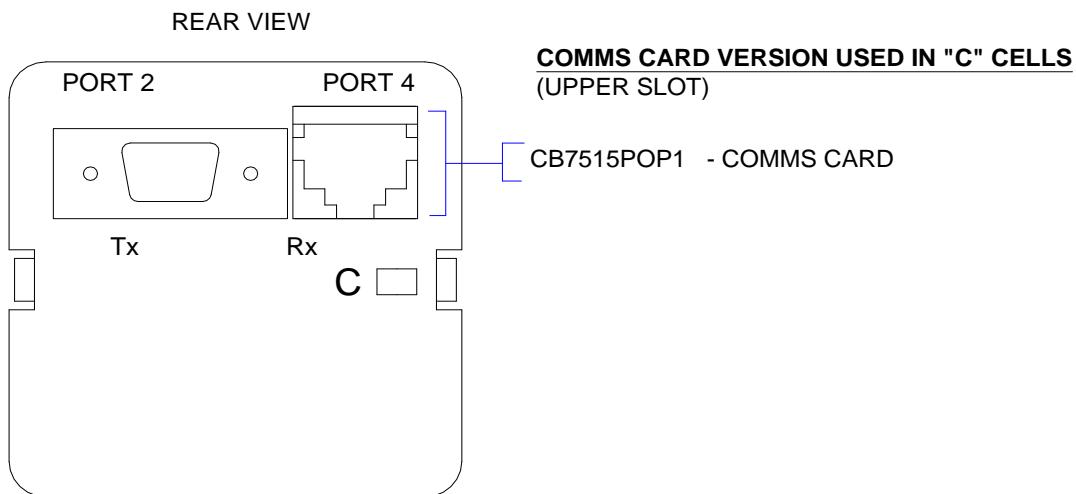
Server IP address – Checks the message is sent from the configured server

Mode – Checks the message is from a Server type

Stratum – Checks the stratum is not 0 (kiss of death packet)

Originate Timestamp – Checks the timestamp of the request matches the originate time in the response back from the Server.

Transmit timestamp – Checks the transmit timestamp from the server is not 0.

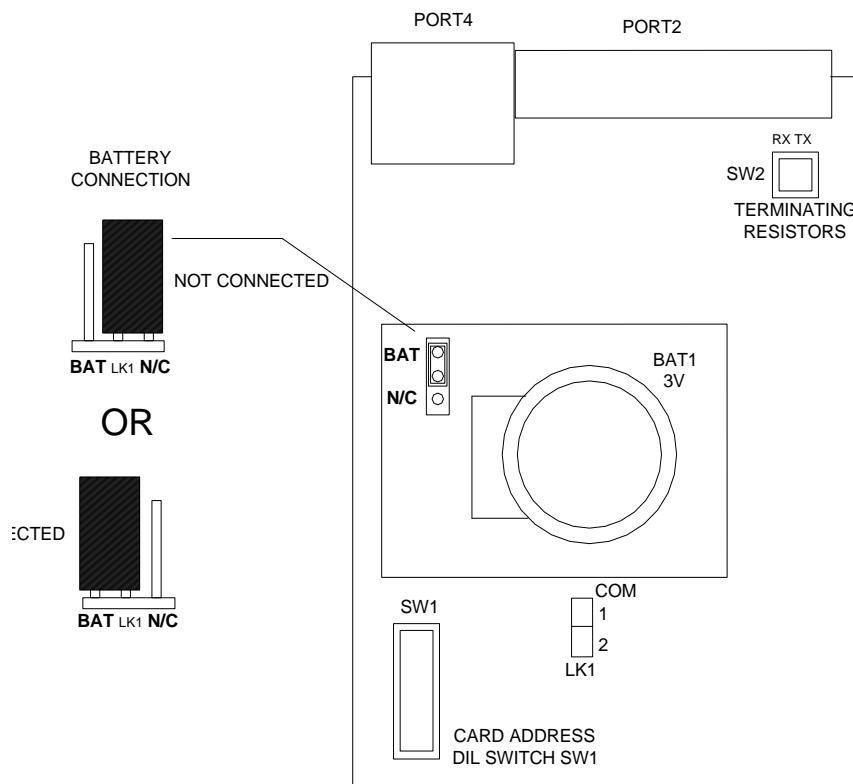

If the client receives an invalid response or no response it will double its poll time after every request it sends. A comm's error will also be shown on the device.

So if for example the poll time is set to 60 seconds in the configuration software, the first poll will happen after 60 seconds if no valid response, the next message will be sent after 120 secs, then 240 etc.

This will continue until the maximum poll time of 3600 seconds is reached.

Once a valid response is received this will be reset to the configured poll time.

SECTION 15– Standard Comm's Card Detail



2 ports are located in the C Cell within the Annunciator as shown above.

Port 2 gives an isolated RS485 port with the following pin out:

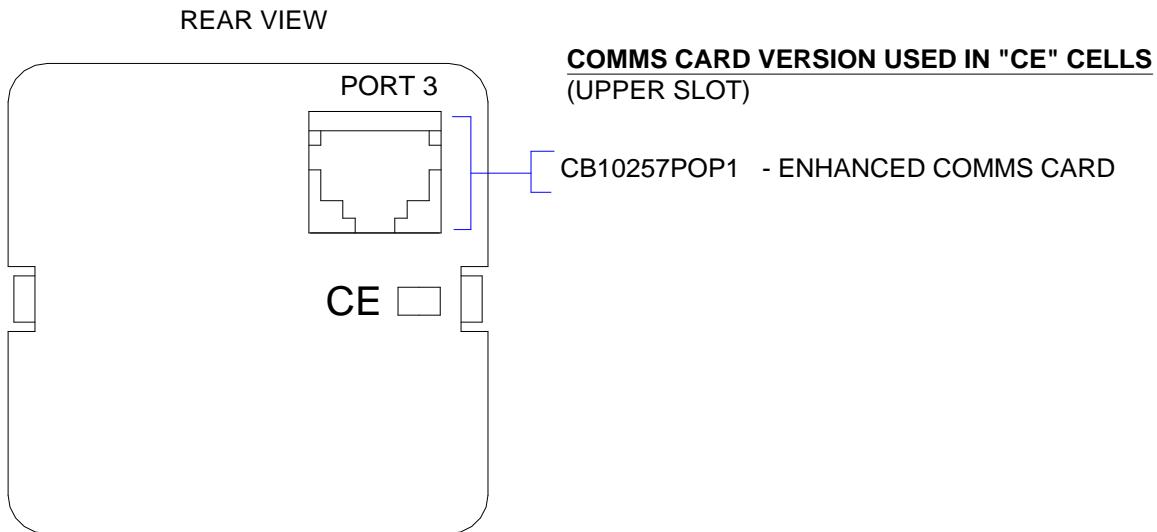
- 1 – Sync+
- 2 – Rx A
- 3 – Tx B
- 5 – GND
- 6 – Sync -
- 7 – Rx B
- 8 – Tx A

Port 4 is an Ethernet port which allows connection to an Ethernet network via a standard RJ45 connection.

Real Time Clock

The comm's card comes with a battery backed RTC which keeps running even if power is lost to the unit. The Battery also powers the SRAM which is used to store the buffers on power loss. The Battery is only drained while no power is present on the unit. The clock can be set in the configuration software using the synchronise time tool.

Note: Units will be shipped with the jumper link set in the N/C position to stop the Battery from going flat before installation. Before applying power this link should be set to the BAT position.


Event Buffers

Each port has its own buffer which can hold up to 500 events. There is also a sort buffer that can also hold 760 events if the port buffer become full. If the sort buffer becomes full then the events will back up on the alarm cards. Each alarm card can hold 900 events. On power loss the buffers will remain as long as the battery is functioning.

To delete the buffers either remove the battery power (This will only clear the comm's card buffer not the Alarm card buffers) or use the Clear buffer tool in the configuration software.

SECTION 16 – Enhanced Comm's Card Details

Enhanced comm's provides an additional Ethernet port.

Port 3 is an Ethernet port which allows connection to an Ethernet network via a standard RJ45 connection.

Real Time Clock

The Enhanced comm's card comes with a battery backed RTC which keeps running even if power is lost to the unit. The Battery is only drained while no power is present on the unit.

SAFETY

The Standard Comm's card and Enhanced Comm's cards are equipped with a lithium coin-cell long life battery.

This battery should be removed by suitably qualified personnel at the end of its life.

If required the replacement model numbers are:

CR 2032 Coin cell. (3.0V lithium, 180mAH)

BR1225 Coin cell. (3.0V lithium, 48mAH)

Please dispose of the battery in accordance with local laws and we note it should not be placed with normal waste.

BATTERY DISPOSAL