MTL Instruments

NCTIO

Part 5 ple of met

Part 6 idelines fo lication of 2 & 3

Part 7 Overview of techniques al measures

E/E/PE system safety lifecycle (in realisation phase)

Overall Safet Lifecvcle'

E/E/PE system safety validation planning

One E/E/PE safety lifecycl for each E/E/PE safety-

/E/PE safety-related syster

(see E/E/PE syster

E/E/PE system design

E/E/PE system des

E/E/PE system inte

E/E/PE system safety vali

To Box 12 in Overall Safe Lifecycle'

quirements specificatio

safety lifecycle)

Othe

Requirements

Part 4 Definitions & abbreviation

Part 1

Documentat Clause 5 & Annex A

Part 1 Management functional safe Clause 6

Part 1 Functional safet assessment Clause 8

E/E/PE system i

Overall safety lifecycle

Overall planning

safety alidatior

Overall

Hazard and risk analysis

Overall safety requir

Overall safety re

E/E/PE system safety

E/E/PE safety-related sy

see E/E/PE sys

Overall operation, maintenance

Decommissioning or disposal

E/E/PE system integra

fraction of an element Hardware fault tolera

60 % - < 90 %

90 % - < 99 %

≥ 99 %

action of an element

< 60 %

≥ 99 %

60 % - < 90 %

90 % - < 99 %

SIL 2

SIL 3 SIL 4

Relationship between & scope of IEC 61508-2 & IEC 61508-3

ety System

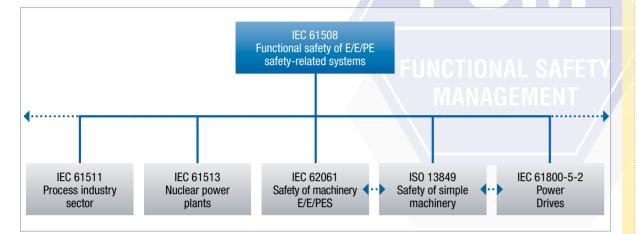
ety System

Other risk reduction n

Overall framework of the IEC 61508 series

Technical Requirements

Part 0


ctional safety a IEC 61508

zard and 7.1 to 7.5

IEC 61508 & SAFETY LIFECYCLE

WHAT IS FUNCTIONAL SAFETY?

In the process industries, safety can be defined as being protected from unacceptable risk of injury or damage to people, property or the environment. Functional Safety relates to the part of overall safety that depends upon the correct operation of an electrical/electronic/programmable electronic safety instrumented system, SIS. The requirements for such a SIS are defined in the IEC 61508 group of standards.

IEC 61508 aims to:

- release the potential of E/E/PE technology to improve both safety and economic performance;
- enable technological developments to take place within an overall safety framework;
- provide a technically sound, system based approach, with sufficient flexibility for the future;
- provide a risk-based approach for determining the required performance of safety-related systems; provide requirements based on common underlying principles to facilitate:
- improved efficiencies in the supply chain for suppliers of subsystems and components to various sectors - improvements in communication and requirements (i.e. to increase clarity of what needs to
- be specified), - the development of techniques and measures that could be used across all sectors, increasing available resources,
- the development of conformity assessment services if required.

Functional Safety Management

A basic requirement of the standards is that all aspects of the safety lifecycle activities demonstrate Functional Safety Management. As well as concerns for equipment, this includes management of personnel competency, covering the end-user, contractors, suppliers and sub-contractors.

Certificate No. CASS 00015/0

Cass

(In the UK see also guidance from HSE' "Managing competence for safety-related systems".)

The MTL Application Note AN9025 provides an introduction to the subject.

MTL Instruments are members of 'The 61508 Association'

Association

SAFETY INTEGRITY LEVELS

DEFINITION

Safety integrity is the ability of the SIS to perform the required safety function **as and when required**. Four levels of safety integrity are defined, each corresponding to a range of target likelihood of failures of a safety function. Safety integrity level 4 (SIL4) is the highest level of safety integrity and safety integrity level 1 (SIL1) is the lowest level.

Note that a safety integrity level is a property of a safety function rather than of a system or any part of a system.

- Safety integrity is considered to be composed of the following two elements:
- Hardware safety integrity; that part of safety integrity relating to random hardware failures in a dangerous mode of failure. It may be necessary to use redundant architectures to achieve adequate hardware safety integrity.
- Syst **atic safety integrity**; that part of safety integrity relating to systematic failures in a dangerous mode of failure. Techniques such as redundant channels of identical hardware, which are very effective at controlling random hardware failures, are of little use in reducing systematic failures such as software errors.

Baseefa Assurance

The 61508

- Devices, elements and systems may be Type A or Type B. Type A is when the components required to perform a specified function meet all of the following:
- a) The failure modes of all components are well defined; and b) The behaviour of the device under fault conditions can be completely determined: and
- c) There is sufficient dependable failure data to show that the claimed failure rates for detected and undetected dangerous failures are met

Type B is simply when one or more of the components required to perform a specified function is not Type A.

Safety Integrity Level (SIL)	Average frequency of a dangerous failure of the safety function $[h^{-1}]$ (PFH)	of the safety function [h ⁻¹] Sa		
4	$\geq 10^{-9} \text{ to} < 10^{-8}$			
3	$\geq 10^{-8}$ to < 10 ⁻⁷			
2	$\geq 10^{-7}$ to < 10^{-6}			
1	$\geq 10^{-6} \text{ to} < 10^{-5}$			
SIL for Low Demand Mo	ode	Туг		
Safety Integrity Level	Average probability of a dangerous failure on demand of the safety function			
Safety Integrity Level (SIL)	Average probability of a dangerous failure on demand of the safety function (PFD _{avg})			
SIL for Low Demand Mo Safety Integrity Level (SIL) 4	Average probability of a dangerous failure on demand of the safety function	Typ Saf		
Safety Integrity Level (SIL) 4	Average probability of a dangerous failure on demand of the safety function (PFD _{avg})			
Safety Integrity Level (SIL)	Average probability of a dangerous failure on demand of the safety function (PFD _{avg}) $\geq 10^{-5}$ to $< 10^{-4}$			

While every effort has been made to ensure that the information of ned within this document is accurate and up to date, MTL Instruments makes no wa representation or undertaking whether expressed or implied, nor does it assume legal liability, whether direct or indirect, or responsibility for the accurac completeness, or usefulness of any inform

www.mtl-inst.com enquiry@mtl-inst.com

Measurement Technology Limited Great Marlings, Butterfield, Luton, Beds, LU2 8DL Tel: +44 (0) 1582 723633 Fax: +44 (0) 1582 422283

Australia Tel: +61 1300 308 374 Fax: +61 1300 308 463 China Tel: +86 10 5980 0231 Fax: +86 10 8562 5725

Germany Fax: +49 (0)2131 7189333

France Tel: +33 (0)4 37 46 16 70 Fax: +33 (0)4 37 46 17 20 Tel: +49 (0)2131 718930

India Tel: + 91 (0)44 24501660 Fax: + 91 (0)44 24501463 Tel: +39 (0)2 61802011

Fax: +39 (0)2 61294560

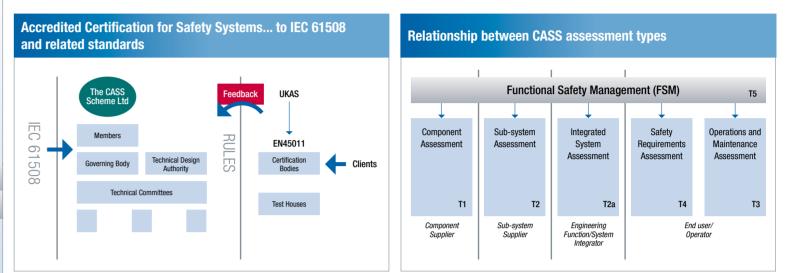
Tel: +81 (0)3 6430 3128 Fax: +81 (0)3 6430 3129 Netherland Tel: +31 (0) 76 7505360 Fax: +31 (0) 76 7505370

Singapore Tel: +65 6 645 9888 Fax: +65 6 487 7997 South Korea Tel: +82 2 538 3481

Fax: +82 2 538 3505

United Arab Emirates Tel: +971 2 446 6840 Fax: +971 2 446 6841

Americas Tel: +1 281 571 8065 Fax: +1 281 571 8069


Tel: +44 (0)1582 723633 Fax: +44 (0)1582 422283

CASS SCHEME

SIL X

CASS is a scheme for assessing the compliance of safety related systems with the requirements of IEC 61508 and associated standards. It provides a systematic approach to be used by certification bodies and others when assessing compliance at all stages from the specification of safety requirements through the design, development and manufacture of system components to integration, commissioning, operation and maintenance.

Cass>

TERMINOLOGIES & ABBREVIATIONS

SII

Back to appropriate overall safety	Definitions and abbreviations				
lifecycle phase	Abbreviation	Full expression	Abbreviation	Full expression	
15 Overall modification and retrofit	AC/DC	Alternating current/direct current	LVL	Limited variability language	
	AIChE	American institute of chemical engineers	MooN	M out of N channel architecture (for example 1002 is 1 out	
				of 2 architecture, where either of the two channels can	
				perform the safety function)	
	ALARP	As Low As Reasonably Practicable	MooND	M out of N channel architecture with Diagnostics	
-2 & IEC 61508-3	ANSI	American National Standards Institute	MTBF	Mean Time Between Failures	
	ASIC	Application Specific Integrated Circuit	MTTR	Mean Time To Repair	
architecture	BPCS	Basic process control system	MRT	Mean Repair Time	
	CCF	Common Cause Failure	NP	Non-programmable	
	CPLD	Complex Programmable Logic Device	PAL	Programmable Array Logic	
	CCPS	Center for chemical process safety	PE	Programmable Electronic	
	DC	Diagnostic Coverage	PES	Programmable electronic system	
Non-programmable hardware	(E)EPLD	(Electrically) Erasable Programmable Logic Device	PFD	Probability of Dangerous Failure on Demand	
Non-programmable hardware design & development	E/E/PE	Electrical/Electronic/Programmable Electronic	PFDavg	Average Probability of dangerous Failure on Demand	
+	E/E/PE	Electrical/Electronic/Programmable	PFH	Average frequency of dangerous failure [h ⁻¹]	
n integration	(system)	Electronic System			
	EEPROM	Electrically Erasable Programmable Read-	PLA	Programmable Logic Array	
		Only Memory			
	EPROM	Erasable Programmable Read-Only Memory	PLC	Programmable logic controller	
	EMC	Electro-magnetic compatibility	SAT	Site acceptance test	
	EUC	Equipment Under Control	SC	Systematic capability	
	FAT	Factory acceptance testing	SFF	Safe failure fraction	
Hardware fault tolerance	FPGA	Field Programmable Gate Array	SIF	Safety instrumented function	
0 1 2	FPL	Fixed program language	SIL	Safety integrity level	
SIL 1 SIL 2 SIL 3	FSA	Functional safety assessment	SIS	Safety instrumented system	
SIL 2 SIL 3 SIL 4	FTA	Fault tree analysis	SRS	Safety requirement specification	
SIL 3SIL 4SIL 4SIL 3SIL 4SIL 4	FVL	Full variability language	UON	Unless otherwise noted	
	GAL	Generic Array Logic	λ s or λ safe	Failure rate of all safe failures	
	H&RA	Hazard & risk assessment	λ d or	Failure rate of all dangerous failures	
Hardware fault tolerance			λ dangerous		
	HFT	Hardware Fault Tolerance	λdd	Failure rate of all dangerous detected failures	
Not AllowedSIL 1SIL 2SIL 1SIL 2SIL 3	IEC	International Electrotechnical Commission	λ du	Failure rate of all dangerous undetected failures	
SIL 2 SIL 3 SIL 3 SIL 4 SIL 4 SIL 4	IEV	International Electrotechnical Vocabulary	λsu	Failure rate of all safe undetected failures	
	ISA	Instrumentation, Systems & Automation Society	λ sd	Failure rate of all safe detected failures	
	ISO	International Organization for Standardization			

For **technical advice** or further information call: +44 (0) 1582 723633

www.61508.org www.iec.ch/functionalsafety www.cass.uk.net www.hse.gov.uk

